Advertisement

Chromatin-Remodeled State in Lymphoma

  • Yuxuan Liu
  • Yulissa Gonzalez
  • Jennifer E. AmengualEmail author
B-Cell NHL, T-Cell NHL, and Hodgkin Lymphoma (J Amengual, Section Editor)
Part of the following topical collections:
  1. Topical Collection on B-cell NHL, T-cell NHL, and Hodgkin Lymphoma

Abstract

Purpose of Review

Emerging evidence has shown that epigenetic derangements might drive and promote tumorigenesis in various types of malignancies and is prevalent in both B cell and T cell lymphomas. The purpose of this review is to explain how the epigenetic derangements result in a chromatin-remodeled state in lymphoma and contribute to the biology and clinical features of these tumors.

Recent Findings

Studies have explored on the functional role of epigenetic derangements in chromatin remodeling and lymphomagenesis. For example, the haploinsufficiency of CREBBP facilitates malignant transformation in mice and directly implicates the importance to re-establish the physiologic acetylation level. New findings identified 4 prominent DLBCL subtypes, including EZB-GC-DLBCL subtype that enriched in mutations of CREBBP, EP300, KMT2D, and SWI/SNF complex genes. EZB subtype has a worse prognosis than other GCB-tumors. Moreover, the action of the histone modifiers as well as chromatin-remodeling factors (e.g., SWI/SNF complex) cooperates to influence the chromatin state resulting in transcription repression. Drugs that alter the epigenetic landscape have been approved in T cell lymphoma. In line with this finding, epigenetic lesions in histone modifiers have recently been uncovered in this disease, further confirming the vulnerability to the therapies targeting epigenetic derangements.

Summary

Modulating the chromatin state by epigenetic-modifying agents provides precision-medicine opportunities to patients with lymphomas that depend on this biology.

Keywords

Chromatin Lymphoma Epigenetics 

Notes

Compliance with Ethical Standards

Conflict of Interest

Dr. Amengual declares that she has received a grant from Appia Pharmaceuticals and has been paid to speak by Epizyme. Dr. Yuxuan and Dr. Rosario have no conflicts to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Honma D, Kanno O, Watanabe J, Kinoshita J, Hirasawa M, Nosaka E, et al. Novel orally bioavailable EZH1/2 dual inhibitors with greater antitumor efficacy than an EZH2 selective inhibitor. Cancer Sci. 2017;108:2069–78.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Yang CY, Wang S. Allosteric inactivation of polycomb repressive complex 2 (PRC2) by inhibiting its adapter protein: embryonic ectodomain development (EED). J Med Chem. 2017;60:2212–4.CrossRefPubMedGoogle Scholar
  3. 3.
    Song X, Zhang L, Gao T, Ye T, Zhu Y, Lei Q, et al. Selective inhibition of EZH2 by ZLD10A blocks H3K27 methylation and kills mutant lymphoma cells proliferation. Biomed Pharmacother. 2016;81:288–94.CrossRefPubMedGoogle Scholar
  4. 4.
    Qi W, Zhao K, Gu J, Huang Y, Wang Y, Zhang H, et al. An allosteric PRC2 inhibitor targeting the H3K27me3 binding pocket of EED. Nat Chem Biol. 2017;13:381–8.CrossRefPubMedGoogle Scholar
  5. 5.
    • Morschhauser F, Tilly H, Chaidos A, et al. Interim update from a phase 2 multicenter study of tazemetostat, an Ezh2 inhibitor, in patients with relapsed or refractory follicular lymphoma. Hematol Oncol. 2019;37:154–6 The most recent updated report showed the promising efficacy of EZH2 inhibitor in follicular lymphoma. CrossRefGoogle Scholar
  6. 6.
    Chng WJ, Yan J, Li B, Lin B, Ng SB. Non-canonical role of EZH2 in natural killer / T-cell lymphoma. Hematol Oncol. 2017;35:121–2.CrossRefGoogle Scholar
  7. 7.
    Zhao X, Zhang X, Tao J. MYC and MiR: vicious circle. Oncotarget. 2013;4:2168–9.PubMedPubMedCentralGoogle Scholar
  8. 8.
    D’Angelo V, Iannotta A, Ramaglia M, et al. EZH2 is increased in paediatric T-cell acute lymphoblastic leukemia and is a suitable molecular target in combination treatment approaches. J Exp Clin Cancer Res. 2015;34:83.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Maruyama D, Tobinai K, Makita S, et al. First-in-human study of the EZH1/2 dual inhibitor DS-3201b in patients with relapsed or refractory non-Hodgkin lymphomas — preliminary results. Blood. 2017;130:4070.Google Scholar
  10. 10.
    Gupta M, Demosthenous C, Stenson MJ, Price-Troska T. Oncogenic role of chromatin modifier polycomb repressive Complex-2 in mantle cell lymphoma. Blood. 2018;132:1582.Google Scholar
  11. 11.
    • Lue JK, Prabhu SA, Liu Y, Gonzalez Y, Verma A, Mundi PS, et al. Precision targeting with EZH2 and HDAC inhibitors in epigenetically dysregulated lymphomas. Clin Cancer Res. 2019. http://clincancerres.aacrjournals.org/content/early/2019/07/10/1078-0432.CCR-18-3989.abstract. This is the first manuscript to demonstrate the synergistic effects by dual targeting EZH2 and HDAC in B cell lymphoma preclinical models.
  12. 12.
    Green MR. Chromatin modifying gene mutations in follicular lymphoma. Blood. 2018;131:595–604.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pruitt K. Molecular and cellular changes during cancer progression resulting from genetic and epigenetic alterations. Prog Mol Biol Transl Sci. 2016;144:3–47.CrossRefPubMedGoogle Scholar
  14. 14.
    Xin C, Wang C, Wang Y, Zhao J, Wang L, Li R, et al. Identification of novel KMT2D mutations in two Chinese children with kabuki syndrome: a case report and systematic literature review. BMC Med Genet. 2018;19:31.Google Scholar
  15. 15.
    Krivtsov AV, Armstrong SA. MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer. 2007;7:823–33.CrossRefPubMedGoogle Scholar
  16. 16.
    Mills AA. Throwing the cancer switch: reciprocal roles of polycomb and trithorax proteins. Nat Rev Cancer. 2010;10:669–82.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Arai S, Yoshimi A, Shimabe M, Ichikawa M, Nakagawa M, Imai Y, et al. Evi-1 is a transcriptional target of mixed-lineage leukemia oncoproteins in hematopoietic stem cells. Blood. 2011;117:6304–14.CrossRefPubMedGoogle Scholar
  18. 18.
    Shilatifard A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem. 2012;81:65–95.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Marschalek R. Mixed lineage leukemia: roles in human malignancies and potential therapy. FEBS J. 2010;277:1822–31.CrossRefPubMedGoogle Scholar
  20. 20.
    van Leeuwen F, Gafken PR, Gottschling DE. Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell. 2002;109:745–56.CrossRefPubMedGoogle Scholar
  21. 21.
    Ng HH, Ciccone DN, Morshead KB, Oettinger MA, Struhl K. Lysine-79 of histone H3 is hypomethylated at silenced loci in yeast and mammalian cells: a potential mechanism for position-effect variegation. Proc Natl Acad Sci. 2003;100:1820–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Gallipoli P, Huntly BJP. Novel epigenetic therapies in hematological malignancies: current status and beyond. Semin Cancer Biol. 2018;51:198–210.CrossRefPubMedGoogle Scholar
  23. 23.
    Stein EM, Garcia-Manero G, Rizzieri DA, Tibes R, Berdeja JG, Savona MR, et al. The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. Blood. 2018;131:2661–9.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Clayton AL, Hazzalin CA, Mahadevan LC. Enhanced histone acetylation and transcription: a dynamic perspective. Mol Cell. 2006;23:289–96.CrossRefPubMedGoogle Scholar
  25. 25.
    Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem. 2001;70:81–120.CrossRefPubMedGoogle Scholar
  26. 26.
    Sterner DE, Berger SL. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev. 2000;64:435–59.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Glozak MA, Sengupta N, Zhang X, Seto E. Acetylation and deacetylation of non-histone proteins. Gene. 2005;363:15–23.CrossRefGoogle Scholar
  28. 28.
    Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009;325:834–40.CrossRefPubMedGoogle Scholar
  29. 29.
    Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997;90:595–606.CrossRefGoogle Scholar
  30. 30.
    Rothgiesser KM, Fey M, Hottiger MO. Acetylation of p65 at lysine 314 is important for late NF-kappaB-dependent gene expression. BMC Genomics. 2010;11:22.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    •• Cerchietti LC, Hatzi K, Caldas-Lopes E, et al. BCL6 repression of EP300 in human diffuse large B cell lymphoma cells provides a basis for rational combinatorial therapy. J Clin Invest. 2010;120:4569–82 The first paper reported inactive p300 mutation in B cell lymphoma patients and demonstrated re-activating p300 is toxic to lymphoma cells. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Yang Y, Rao R, Shen J, Tang Y, Fiskus W, Nechtman J, et al. Role of acetylation and extracellular location of heat shock protein 90alpha in tumor cell invasion. Cancer Res. 2008;68:4833–42.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Jung H, Yoo HY, Lee SH, et al. The mutational landscape of ocular marginal zone lymphoma identifies frequent alterations in TNFAIP3 followed by mutations in TBL1XR1 and CREBBP. Oncotarget. 2017;8:17038–49.PubMedPubMedCentralGoogle Scholar
  34. 34.
    •• Pasqualucci L, Dominguez-Sola D, Chiarenza A, et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature. 2011;471:189–95 This manuscript reported for the first time inactivating mutation of CREBBP in DLBCL and follicular lymphoma patients and confirmed the presence of EP300 mutations in DLBCL. It also demonstrated mutant CBP is unable to acetylate p53. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Shah UA, Chung EY, Giricz O, Pradhan K, Kataoka K, Gordon-Mitchell S, et al. North American ATLL has a distinct mutational and transcriptional profile and responds to epigenetic therapies. Blood. 2018;132:1507–18.CrossRefPubMedGoogle Scholar
  36. 36.
    Schatz JH, Horwitz SM, Teruya-Feldstein J, Lunning MA, Viale A, Huberman K, et al. Targeted mutational profiling of peripheral T-cell lymphoma not otherwise specified highlights new mechanisms in a heterogeneous pathogenesis. Leukemia. 2015;29:237–41.CrossRefPubMedGoogle Scholar
  37. 37.
    Zhu X, He F, Zeng H, Ling S, Chen A, Wang Y, et al. Identification of functional cooperative mutations of SETD2 in human acute leukemia. Nat Genet. 2014;46:287–93.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Jiang L, Gu ZH, Yan ZX, Zhao X, Xie YY, Zhang ZG, et al. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nat Genet. 2015;47:1061–6.CrossRefPubMedGoogle Scholar
  39. 39.
    Ji MM, Huang YH, Huang JY, Wang ZF, Fu D, Liu H, et al. Histone modifier gene mutations in peripheral T-cell lymphoma not otherwise specified. Haematologica. 2018;103:679–87.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Mullighan CG, Zhang J, Kasper LH, Lerach S, Payne-Turner D, Phillips LA, et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature. 2011;471:235–9.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hatzi K, Jiang Y, Huang C, Garrett-Bakelman F, Gearhart MD, Giannopoulou EG, et al. A hybrid mechanism of action for BCL6 in B cells defined by formation of functionally distinct complexes at enhancers and promoters. Cell Rep. 2013;4:578–88.CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang J, Vlasevska S, Wells VA, Nataraj S, Holmes AB, Duval R, et al. The CREBBP acetyltransferase is a haploinsufficient tumor suppressor in B-cell lymphoma. Cancer Discov. 2017;7:322–37.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Green MR, Kihira S, Liu CL, Nair RV, Salari R, Gentles AJ, et al. Mutations in early follicular lymphoma progenitors are associated with suppressed antigen presentation. Proc Natl Acad Sci U S A. 2015;112:E1116–25.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Balasubramanyam K, Swaminathan V, Ranganathan A, Kundu TK. Small molecule modulators of histone acetyltransferase p300. J Biol Chem. 2003;278:19134–40.CrossRefPubMedGoogle Scholar
  45. 45.
    Mantelingu K, Kishore AH, Balasubramanyam K, et al. Activation of p300 histone acetyltransferase by small molecules altering enzyme structure: probed by surface-enhanced Raman spectroscopy. The journal of physical chemistry. B. 2007;111:4527–34.Google Scholar
  46. 46.
    Liu Y, Fiorito J, Gonzalez Y, et al. Development of first-in-class histone acetyltransferase (HAT) activators for precision targeting of epigenetic derangements in lymphoma. Blood. 2018;132:37.Google Scholar
  47. 47.
    Picaud S, Fedorov O, Thanasopoulou A, Leonards K, Jones K, Meier J, et al. Generation of a selective small molecule inhibitor of the CBP/p300 bromodomain for leukemia therapy. Cancer Res. 2015;75:5106–19.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Lasko LM, Jakob CG, Edalji RP, Qiu W, Montgomery D, Digiammarino EL, et al. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours. Nature. 2017;550:128–32.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Gorrini C, Squatrito M, Luise C, Syed N, Perna D, Wark L, et al. Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature. 2007;448:1063–7.CrossRefPubMedGoogle Scholar
  50. 50.
    Katsumoto T, Aikawa Y, Iwama A, et al. MOZ is essential for maintenance of hematopoietic stem cells. Genes Dev. 2006;20:1321–30.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Thomas T, Corcoran LM, Gugasyan R, et al. Monocytic leukemia zinc finger protein is essential for the development of long-term reconstituting hematopoietic stem cells. Genes Dev. 2006;20:1175–86.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Sheikh BN, Yang Y, Schreuder J, Nilsson SK, Bilardi R, Carotta S, et al. MOZ (KAT6A) is essential for the maintenance of classically defined adult hematopoietic stem cells. Blood. 2016;128:2307–18.CrossRefPubMedGoogle Scholar
  53. 53.
    Borrow J, Stanton VP Jr, Andresen JM, et al. The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet. 1996;14:33–41.CrossRefPubMedGoogle Scholar
  54. 54.
    Huang F, Abmayr SM, Workman JL. Regulation of KAT6 acetyltransferases and their roles in cell cycle progression, stem cell maintenance, and human disease. Mol Cell Biol. 2016;36:1900–7.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Sheikh BN, Lee SC, El-Saafin F, et al. MOZ regulates B-cell progenitors and, consequently, Moz haploinsufficiency dramatically retards MYC-induced lymphoma development. Blood. 2015;125:1910–21.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Baell JB, Leaver DJ, Hermans SJ, Kelly GL, Brennan MS, Downer NL, et al. Inhibitors of histone acetyltransferases KAT6A/B induce senescence and arrest tumour growth. Nature. 2018;560:253–7.CrossRefPubMedGoogle Scholar
  57. 57.
    Kikuchi H, Nakayama M, Kuribayashi F, Mimuro H, Imajoh-Ohmi S, Nishitoh H, et al. Histone acetyltransferase PCAF is involved in transactivation of Bcl-6 and Pax5 genes in immature B cells. Biochem Biophys Res Commun. 2015;467:509–13.CrossRefPubMedGoogle Scholar
  58. 58.
    McClure JJ, Li X, Chou CJ. Advances and challenges of HDAC inhibitors in cancer therapeutics. Adv Cancer Res. 2018;138:183–211.CrossRefPubMedGoogle Scholar
  59. 59.
    Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 2009;10:32–42.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Yang XJ, Seto E. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol. 2008;9:206–18.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Haery L, Thompson RC, Gilmore TD. Histone acetyltransferases and histone deacetylases in B- and T-cell development, physiology and malignancy. Genes Cancer. 2015;6:184–213.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Chen S, Dai Y, Pei XY, Grant S. Bim upregulation by histone deacetylase inhibitors mediates interactions with the Bcl-2 antagonist ABT-737: evidence for distinct roles for Bcl-2, Bcl-xL, and Mcl-1. Mol Cell Biol. 2009;29:6149–69.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Zhao Y, Tan J, Zhuang L, Jiang X, Liu ET, Yu Q. Inhibitors of histone deacetylases target the Rb-E2F1 pathway for apoptosis induction through activation of proapoptotic protein Bim. Proc Natl Acad Sci U S A. 2005;102:16090–5.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Liu Y, Mondello P, Erazo T, Tannan NB, Asgari Z, de Stanchina E, et al. NOXA genetic amplification or pharmacologic induction primes lymphoma cells to BCL2 inhibitor-induced cell death. Proc Natl Acad Sci U S A. 2018;115:12034–9.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Gui CY, Ngo L, Xu WS, Richon VM, Marks PA. Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc Natl Acad Sci U S A. 2004;101:1241–6.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Olsen EA, Kim YH, Kuzel TM, Pacheco TR, Foss FM, Parker S, et al. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol. 2007;25:3109–15.CrossRefPubMedGoogle Scholar
  67. 67.
    Whittaker SJ, Demierre MF, Kim EJ, Rook AH, Lerner A, Duvic M, et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol. 2010;28:4485–91.CrossRefPubMedGoogle Scholar
  68. 68.
    Coiffier B, Pro B, Prince HM, Foss F, Sokol L, Greenwood M, et al. Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy. J Clin Oncol. 2012;30:631–6.CrossRefGoogle Scholar
  69. 69.
    O’Connor OA, Horwitz S, Masszi T, van Hoof A, Brown P, Doorduijn J, et al. Belinostat in patients with relapsed or refractory peripheral T-cell lymphoma: results of the pivotal phase II BELIEF (CLN-19) study. J Clin Oncol. 2015;33:2492–9.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    San-Miguel JF, Hungria VT, Yoon SS, et al. Panobinostat plus bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: a multicentre, randomised, double-blind phase 3 trial. Lancet Oncol. 2014;15:1195–206.CrossRefPubMedGoogle Scholar
  71. 71.
    Amengual JE, Clark-Garvey S, Kalac M, Scotto L, Marchi E, Neylon E, et al. Sirtuin and pan-class I/II deacetylase (DAC) inhibition is synergistic in preclinical models and clinical studies of lymphoma. Blood. 2013;122:2104–13.CrossRefPubMedGoogle Scholar
  72. 72.
    Jiang Y, Ortega-Molina A, Geng H, Ying HY, Hatzi K, Parsa S, et al. CREBBP inactivation promotes the development of HDAC3-dependent lymphomas. Cancer Discov. 2017;7:38–53.CrossRefPubMedGoogle Scholar
  73. 73.
    • Qu K, Zaba LC, Satpathy AT, et al. Chromatin accessibility landscape of cutaneous T cell lymphoma and dynamic response to HDAC inhibitors. Cancer Cell. 2017;32:27–41 e24 The manuscript demonstrated clinical response to HDAC inhibitors is strongly associated with chromatin accessibility by ATAC-seq. CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Wang CY, Filippakopoulos P. Beating the odds: BETs in disease. Trends Biochem Sci. 2015;40:468–79.CrossRefPubMedGoogle Scholar
  75. 75.
    Ozer HG, El-Gamal D, Powell B, et al. BRD4 profiling identifies critical chronic lymphocytic leukemia oncogenic circuits and reveals sensitivity to PLX51107, a novel structurally distinct BET inhibitor. Cancer Discov. 2018;8:458–77.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Vazquez R, Riveiro ME, Astorgues-Xerri L, et al. The bromodomain inhibitor OTX015 (MK-8628) exerts anti-tumor activity in triple-negative breast cancer models as single agent and in combination with everolimus. Oncotarget. 2017;8:7598–613.CrossRefPubMedGoogle Scholar
  77. 77.
    Wang L, Matkar S, Xie G, An C, He X, Kong X, et al. BRD4 inhibitor IBET upregulates p27kip/cip protein stability in neuroendocrine tumor cells. Cancer Biol Ther. 2017;18:229–36.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Yokoyama Y, Zhu H, Lee JH, Kossenkov AV, Wu SY, Wickramasinghe JM, et al. BET inhibitors suppress ALDH activity by targeting ALDH1A1 super-enhancer in ovarian cancer. Cancer Res. 2016;76:6320–30.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Piunti A, Hashizume R, Morgan MA, Bartom ET, Horbinski CM, Marshall SA, et al. Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nat Med. 2017;23:493–500.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Gryder BE, Yohe ME, Chou HC, Zhang X, Marques J, Wachtel M, et al. PAX3-FOXO1 establishes myogenic super enhancers and confers BET bromodomain vulnerability. Cancer Discov. 2017;7:884–99.CrossRefPubMedGoogle Scholar
  81. 81.
    Chapuy B, McKeown MR, Lin CY, et al. Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. Cancer Cell. 2013;24:777–90.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Loven J, Hoke HA, Lin CY, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell. 2013;153:320–34.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Hogg SJ, Newbold A, Vervoort SJ, Cluse LA, Martin BP, Gregory GP, et al. BET inhibition induces apoptosis in aggressive B-cell lymphoma via epigenetic regulation of BCL-2 family members. Mol Cancer Ther. 2016;15:2030–41.CrossRefPubMedGoogle Scholar
  84. 84.
    Esteve-Arenys A, Valero JG, Chamorro-Jorganes A, Gonzalez D, Rodriguez V, Dlouhy I, et al. The BET bromodomain inhibitor CPI203 overcomes resistance to ABT-199 (venetoclax) by downregulation of BFL-1/A1 in in vitro and in vivo models of MYC+/BCL2+ double hit lymphoma. Oncogene. 2018;37:1830–44.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Sun B, Fiskus W, Qian Y, Rajapakshe K, Raina K, Coleman KG, et al. BET protein proteolysis targeting chimera (PROTAC) exerts potent lethal activity against mantle cell lymphoma cells. Leukemia. 2018;32:343–52.CrossRefPubMedGoogle Scholar
  86. 86.
    Kim SR, Lewis JM, Cyrenne BM, et al. BET inhibition in advanced cutaneous T cell lymphoma is synergistically potentiated by BCL2 inhibition or HDAC inhibition. Oncotarget. 2018;9:29193–207.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Boi M, Todaro M, Vurchio V, et al. Therapeutic efficacy of the bromodomain inhibitor OTX015/MK-8628 in ALK-positive anaplastic large cell lymphoma: an alternative modality to overcome resistant phenotypes. Oncotarget. 2016;7:79637–53.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Stern M, Jensen R, Herskowitz I. Five SWI genes are required for expression of the HO gene in yeast. J Mol Biol. 1984;178:853–68.CrossRefPubMedGoogle Scholar
  89. 89.
    Neigeborn L, Carlson M. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics. 1984;108:845–58.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Nair SS, Kumar R. Chromatin remodeling in cancer: a gateway to regulate gene transcription. Mol Oncol. 2012;6:611–9.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Clapier CR, Cairns BR. The biology of chromatin remodeling complexes. Annu Rev Biochem. 2009;78:273–304.CrossRefPubMedGoogle Scholar
  92. 92.
    Mathur R, Roberts CWM. SWI/SNF (BAF) complexes: guardians of the epigenome. Ann Rev Cancer Biol. 2018;2:413–27.CrossRefGoogle Scholar
  93. 93.
    Roberts CW, Orkin SH. The SWI/SNF complex--chromatin and cancer. Nat Rev Cancer. 2004;4:133–42.CrossRefPubMedGoogle Scholar
  94. 94.
    Kwon H, Imbalzano AN, Khavari PA, Kingston RE, Green MR. Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature. 1994;370:477–81.CrossRefPubMedGoogle Scholar
  95. 95.
    Shain AH, Pollack JR. The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS One. 2013;8:e55119.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Lu C, Allis CD. SWI/SNF complex in cancer. Nat Genet. 2017;49:178–9.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Medina PP, Romero OA, Kohno T, Montuenga LM, Pio R, Yokota J, et al. Frequent BRG1/SMARCA4-inactivating mutations in human lung cancer cell lines. Hum Mutat. 2008;29:617–22.CrossRefPubMedGoogle Scholar
  98. 98.
    Reisman D, Glaros S, Thompson EA. The SWI/SNF complex and cancer. Oncogene. 2009;28:1653–68.CrossRefPubMedGoogle Scholar
  99. 99.
    Kaymaz Y, Oduor CI, Yu H, Otieno JA, Ong’echa JM, Moormann AM, et al. Comprehensive transcriptome and mutational profiling of endemic Burkitt lymphoma reveals EBV type-specific differences. Mol Cancer Res. 2017;15:563–76.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Roberts CW, Leroux MM, Fleming MD, Orkin SH. Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene Snf5. Cancer Cell. 2002;2:415–25.CrossRefPubMedGoogle Scholar
  101. 101.
    Giulino-Roth L, Wang K, MacDonald TY, et al. Targeted genomic sequencing of pediatric Burkitt lymphoma identifies recurrent alterations in antiapoptotic and chromatin-remodeling genes. Blood. 2012;120:5181–4.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Krysiak K, Gomez F, White BS, Matlock M, Miller CA, Trani L, et al. Recurrent somatic mutations affecting B-cell receptor signaling pathway genes in follicular lymphoma. Blood. 2017;129:473–83.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Pastore A, Jurinovic V, Kridel R, Hoster E, Staiger AM, Szczepanowski M, et al. Integration of gene mutations in risk prognostication for patients receiving first-line immunochemotherapy for follicular lymphoma: a retrospective analysis of a prospective clinical trial and validation in a population-based registry. Lancet Oncol. 2015;16:1111–22.CrossRefPubMedGoogle Scholar
  104. 104.
    Zani VJ, Asou N, Jadayel D, et al. Molecular cloning of complex chromosomal translocation t(8;14;12)(q24.1;q32.3;q24.1) in a Burkitt lymphoma cell line defines a new gene (BCL7A) with homology to caldesmon. Blood. 1996;87:3124–34.PubMedGoogle Scholar
  105. 105.
    Agarwal R, Chan YC, Tam CS, Hunter T, Vassiliadis D, Teh CE, et al. Dynamic molecular monitoring reveals that SWI-SNF mutations mediate resistance to ibrutinib plus venetoclax in mantle cell lymphoma. Nat Med. 2019;25:119–29.CrossRefPubMedGoogle Scholar
  106. 106.
    Helming KC, Wang X, Wilson BG, Vazquez F, Haswell JR, Manchester HE, et al. ARID1B is a specific vulnerability in ARID1A-mutant cancers. Nat Med. 2014;20:251–4.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Hoffman GR, Rahal R, Buxton F, Xiang K, McAllister G, Frias E, et al. Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers. Proc Natl Acad Sci U S A. 2014;111:3128–33.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    •• Schmitz R, Wright GW, Huang DW, et al. Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med. 2018;378:1396–407 The study identified 4 prominent genetic subtypes of DLBCL based on shared genomic abnormalities. CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Kim KH, Kim W, Howard TP, Vazquez F, Tsherniak A, Wu JN, et al. SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2. Nat Med. 2015;21:1491–6.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Wilson BG, Wang X, Shen X, McKenna ES, Lemieux ME, Cho YJ, et al. Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell. 2010;18:316–28.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Bitler BG, Aird KM, Garipov A, Li H, Amatangelo M, Kossenkov AV, et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat Med. 2015;21:231–8.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Gounder MM, Stacchiotti S, Schöffski P, Attia S, Italiano A, Jones R, et al. Phase 2 multicenter study of the EZH2 inhibitor tazemetostat in adults with INI1 negative epithelioid sarcoma (NCT02601950). J Clin Oncol. 2017;35:11058.CrossRefGoogle Scholar
  113. 113.
    Li H, Kaminski MS, Li Y, Yildiz M, Ouillette P, Jones S, et al. Mutations in linker histone genes HIST1H1 B, C, D, and E; OCT2 (POU2F2); IRF8; and ARID1A underlying the pathogenesis of follicular lymphoma. Blood. 2014;123:1487–98.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Okosun J, Bodor C, Wang J, et al. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat Genet. 2014;46:176–81.CrossRefGoogle Scholar
  115. 115.
    Hergeth SP, Schneider R. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle. EMBO Rep. 2015;16:1439–53.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Pasqualucci L, Khiabanian H, Fangazio M, Vasishtha M, Messina M, Holmes AB, et al. Genetics of follicular lymphoma transformation. Cell Rep. 2014;6:130–40.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    • Morin RD, Johnson NA, Severson TM, et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet. 2010;42:181–5 This article reported for the first time the recurrent mutation in EZH2 in large cohorts of DLBCL and follicular lymphoma patients. CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    • Zhang J, Dominguez-Sola D, Hussein S, et al. Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis. Nat Med. 2015;21:1190–8 This manuscript demonstrated the functional consequences of tumor suppressor KMT2D mutations to lymphomagenesis. CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Green MR, Gentles AJ, Nair RV, Irish JM, Kihira S, Liu CL, et al. Hierarchy in somatic mutations arising during genomic evolution and progression of follicular lymphoma. Blood. 2013;121:1604–11.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Love C, Sun Z, Jima D, Li G, Zhang J, Miles R, et al. The genetic landscape of mutations in Burkitt lymphoma. Nat Genet. 2012;44:1321–5.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD, et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature. 2011;476:298–303.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Morin RD, Mungall K, Pleasance E, Mungall AJ, Goya R, Huff RD, et al. Mutational and structural analysis of diffuse large B-cell lymphoma using whole-genome sequencing. Blood. 2013;122:1256–65.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    da Silva Almeida AC, Abate F, Khiabanian H, Martinez-Escala E, Guitart J, Tensen CP, et al. The mutational landscape of cutaneous T cell lymphoma and Sezary syndrome. Nat Genet. 2015;47:1465–70.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yuxuan Liu
    • 1
  • Yulissa Gonzalez
    • 1
  • Jennifer E. Amengual
    • 1
    Email author
  1. 1.Division of Hematology and Oncology, Department of Medicine, Herbert Irving Comprehensive Cancer CenterColumbia University Medical CenterNew YorkUSA

Personalised recommendations