Advertisement

Current Hematologic Malignancy Reports

, Volume 14, Issue 5, pp 405–413 | Cite as

The Role of PI3K Inhibition in Lymphoid Malignancies

  • Gottfried von Keudell
  • Alison J. MoskowitzEmail author
B-cell NHL, T-cell NHL, and Hodgkin Lymphoma (J Amengual, Section Editor)
  • 214 Downloads
Part of the following topical collections:
  1. Topical Collection on B-cell NHL, T-cell NHL, and Hodgkin Lymphoma

Abstract

Purpose of Review

The outcome of patients with lymphoid malignancies has markedly improved in recent years which is likely due to a combination of advances in supportive care, and therapeutic options. In this article, we will provide an overview over the role PI3-kinase signalling, one of the most important dysregulated pathways in cancer, and its successful inhibition in lymphoma.

Recent Findings

PI3-kinase inhibitors have shown remarkable activity in an increasing subset of patients with non-Hodgkin lymphomas. The first drug to be approved was idelalisib for patients with relapsed/refractory follicular lymphoma and CLL/SLL as monotherapy, or in combination with rituximab, respectively. After an initial setback related to increased toxicity including deaths observed in several upfront studies, there has been a resurgence in interest in this pathway following the promising efficacy of second-generation PI3K inhibitors including in patients with T cell lymphomas.

Summary

PI3K inhibition continues to be an invaluable tool in the therapy of patients with lymphoid malignancies if managed cautiously. Preclinical models are helpful in predicting possible side effects and identifying new lymphoma subtypes that may be susceptible to this class of agents. The future will likely involve rationally designed combinatorial approaches to deepen the response rate and prevent the emergence of resistance.

Keywords

PI3-kinase B cell receptor Tumor microenvironment Lymphoma Follicular lymphoma T cell lymphoma CLL 

Notes

Compliance with Ethical Standards

Conflict of Interest

Gottfried von Keudell has received consulting honoraria from Genentech, Pharmacyclics, and Bayer.

Alison J. Moskowitz has received research support from Seattle Genetics, Merck, Bristol-Myers Squibb, and Incyte. In addition, she has received honorarium from Kyowa Hakko Kirin Pharma, Miragen Therapeutics, Takeda Pharmaceuticals, ADC Therapeutics, Seattle Genetics, Cell Medica, Bristol-Myers Squibb, and Erytech Pharma.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Armitage JO, Gascoyne RD, Lunning MA, Cavalli F. Non-Hodgkin lymphoma. Lancet. 2017;390(10091):298–310.PubMedGoogle Scholar
  2. 2.
    Tan D, Horning SJ, Hoppe RT, Levy R, Rosenberg SA, Sigal BM, et al. Improvements in observed and relative survival in follicular grade 1-2 lymphoma during 4 decades: the Stanford University experience. Blood. 2013;122(6):981–7.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Vose J, Armitage J, Weisenburger D. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol. 2008;26(25):4124–30.PubMedGoogle Scholar
  4. 4.
    Younes A, Ansell S, Fowler N, Wilson W, de Vos S, Seymour J, et al. The landscape of new drugs in lymphoma. Nat Rev Clin Oncol. 2017;14(6):335–46.PubMedGoogle Scholar
  5. 5.
    Kuppers R. Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer. 2005;5(4):251–62.PubMedGoogle Scholar
  6. 6.
    Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505(7484):495–501.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Okkenhaug K, Vanhaesebroeck B. PI3K in lymphocyte development, differentiation and activation. Nat Rev Immunol. 2003;3(4):317–30.PubMedGoogle Scholar
  8. 8.
    Young RM, Staudt LM. Targeting pathological B cell receptor signalling in lymphoid malignancies. Nat Rev Drug Discov. 2013;12(3):229–43.PubMedGoogle Scholar
  9. 9.
    Bi L, Okabe I, Bernard DJ, Wynshaw-Boris A, Nussbaum RL. Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110alpha subunit of phosphoinositide 3-kinase. J Biol Chem. 1999;274(16):10963–8.PubMedGoogle Scholar
  10. 10.
    Bi L, Okabe I, Bernard DJ, Nussbaum RL. Early embryonic lethality in mice deficient in the p110beta catalytic subunit of PI 3-kinase. Mamm Genome. 2002;13(3):169–72.PubMedGoogle Scholar
  11. 11.
    Vanhaesebroeck B, Ali K, Bilancio A, Geering B, Foukas LC. Signalling by PI3K isoforms: insights from gene-targeted mice. Trends Biochem Sci. 2005;30(4):194–204.PubMedGoogle Scholar
  12. 12.
    Clayton E, Bardi G, Bell SE, Chantry D, Downes CP, Gray A, et al. A crucial role for the p110delta subunit of phosphatidylinositol 3-kinase in B cell development and activation. J Exp Med. 2002;196(6):753–63.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Okkenhaug K, Bilancio A, Farjot G, Priddle H, Sancho S, Peskett E, et al. Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice. Science. 2002;297(5583):1031–4.PubMedGoogle Scholar
  14. 14.
    Hirsch E, Katanaev VL, Garlanda C, Azzolino O, Pirola L, Silengo L, et al. Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science. 2000;287(5455):1049–53.PubMedGoogle Scholar
  15. 15.
    Sasaki T, Irie-Sasaki J, Jones RG, Oliveira-dos-Santos AJ, Stanford WL, Bolon B, et al. Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science. 2000;287(5455):1040–6.PubMedGoogle Scholar
  16. 16.
    Reif K, Okkenhaug K, Sasaki T, Penninger JM, Vanhaesebroeck B, Cyster JG. Cutting edge: differential roles for phosphoinositide 3-kinases, p110 gamma and p110 delta, in lymphocyte chemotaxis and homing. J Immunol. 2004;173(4):2236–40.PubMedGoogle Scholar
  17. 17.
    Kaneda MM, Messer KS, Ralainirina N, Li HY, Leem CJ, Gorjestani S, et al. PI3K gamma is a molecular switch that controls immune suppression (vol 539, pg 437, 2016). Nature. 2017;542(7639):124.PubMedGoogle Scholar
  18. 18.
    Davis RE, Ngo VN, Lenz G, Tolar P, Young RM, Romesser PB, et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 2010;463(7277):88–92.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Lannutti BJ, Meadows SA, Herman SE, Kashishian A, Steiner B, Johnson AJ, et al. CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood. 2011;117(2):591–4.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Srinivasan L, Sasaki Y, Calado DP, Zhang B, Paik JH, DePinho RA, et al. PI3 kinase signals BCR-dependent mature B cell survival. Cell. 2009;139(3):573–86.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Hoellenriegel J, Meadows SA, Sivina M, Wierda WG, Kantarjian H, Keating MJ, et al. The phosphoinositide 3′-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood. 2011;118(13):3603–12.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Burger JA, Tsukada N, Burger M, Zvaifler NJ, Dell’Aquila M, Kipps TJ. Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood. 2000;96(8):2655–63.PubMedGoogle Scholar
  23. 23.
    Ali K, Soond DR, Pineiro R, Hagemann T, Pearce W, Lim EL, et al. Inactivation of PI(3)K p110delta breaks regulatory T-cell-mediated immune tolerance to cancer. Nature. 2014;510(7505):407–11.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Gopal AK, Kahl BS, de Vos S, Wagner-Johnston ND, Schuster SJ, Jurczak WJ, et al. PI3Kdelta inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med. 2014;370(11):1008–18.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM, Hillmen P, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014;370(11):997–1007.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Coutre SE, Barrientos JC, Brown JR, de Vos S, Furman RR, Keating MJ, et al. Management of adverse events associated with idelalisib treatment: expert panel opinion. Leuk Lymphoma. 2015;56(10):2779–86.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Cheah CY, Nastoupil LJ, Neelapu SS, Forbes SG, Oki Y, Fowler NH. Lenalidomide, idelalisib, and rituximab are unacceptably toxic in patients with relapsed/refractory indolent lymphoma. Blood. 2015;125(21):3357–9.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Smith SM, Pitcher BN, Jung SH, Bartlett NL, Wagner-Johnston N, Park SI, et al. Safety and tolerability of idelalisib, lenalidomide, and rituximab in relapsed and refractory lymphoma: the Alliance for Clinical Trials in Oncology A051201 and A051202 phase 1 trials. Lancet Haematol. 2017;4(4):e176–e82.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Barr PM, Saylors GB, Spurgeon SE, Cheson BD, Greenwald DR, O’Brien SM, et al. Phase 2 study of idelalisib and entospletinib: pneumonitis limits combination therapy in relapsed refractory CLL and NHL. Blood. 2016;127(20):2411–5.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Cheah CY, Fowler NH. Idelalisib in the management of lymphoma. Blood. 2016;128(3):331–6.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Cuneo A, Barosi G, Danesi R, Fagiuoli S, Ghia P, Marzano A, et al. Management of adverse events associated with idelalisib treatment in chronic lymphocytic leukemia and follicular lymphoma: a multidisciplinary position paper. Hematol Oncol. 2019;37(1):3–14.PubMedGoogle Scholar
  32. 32.
    Liu N, Rowley BR, Bull CO, Schneider C, Haegebarth A, Schatz CA, et al. BAY 80-6946 is a highly selective intravenous PI3K inhibitor with potent p110alpha and p110delta activities in tumor cell lines and xenograft models. Mol Cancer Ther. 2013;12(11):2319–30.PubMedGoogle Scholar
  33. 33.
    Patnaik A, Appleman LJ, Tolcher AW, Papadopoulos KP, Beeram M, Rasco DW, et al. First-in-human phase I study of copanlisib (BAY 80-6946), an intravenous pan-class I phosphatidylinositol 3-kinase inhibitor, in patients with advanced solid tumors and non-Hodgkin’s lymphomas. Ann Oncol. 2016;27(10):1928–40.PubMedPubMedCentralGoogle Scholar
  34. 34.
    • Dreyling M, Morschhauser F, Bouabdallah K, Bron D, Cunningham D, Assouline SE, et al. Phase II study of copanlisib, a PI3K inhibitor, in relapsed or refractory, indolent or aggressive lymphoma. Ann Oncol. 2017;28(9):2169–78 The results of this phase II study were the basis for the approval of copanlisib for patients with relapsed/refractory follicular lymphoma. PubMedPubMedCentralGoogle Scholar
  35. 35.
    Dreyling M, Santoro A, Mollica L, Leppa S, Follows GA, Lenz G, et al. Long-term efficacy and safety from the copanlisib CHRONOS-1 study in patients with relapsed or refractory indolent B-cell lymphoma. Blood. 2018;132.Google Scholar
  36. 36.
    Flinn IW, O’Brien S, Kahl B, Patel M, Oki Y, Foss FF, et al. Duvelisib, a novel oral dual inhibitor of PI3K-delta,gamma, is clinically active in advanced hematologic malignancies. Blood. 2018;131(8):877–887.PubMedPubMedCentralGoogle Scholar
  37. 37.
    • Flinn IW, Miller CB, Ardeshna KM, Tetreault S, Assouline SE, Mayer J, et al. DYNAMO: a phase II study of duvelisib (IPI-145) in patients with refractory indolent non-Hodgkin lymphoma. J Clin Oncol. 2019;37(11):912–22 The results of this study were the basis for the approval of duvelisib for patients with relapsed/refractory follicular lymphoma. PubMedGoogle Scholar
  38. 38.
    • Flinn IW, Hillmen P, Montillo M, Nagy Z, Illes A, Etienne G, et al. The phase 3 DUO trial: duvelisib vs ofatumumab in relapsed and refractory CLL/SLL. Blood. 2018;132(23):2446–55 The results of this study were the basis for the approval of duvelisib for patients with relapsed/refractory CLL. PubMedPubMedCentralGoogle Scholar
  39. 39.
    Deng CC, Lipstein MR, Scotto L, Serrano XOJ, Mangone MA, Li SR, et al. Silencing c-Myc translation as a therapeutic strategy through targeting PI3K delta and CK1 epsilon in hematological malignancies. Blood. 2017;129(1):88–99.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Bryja V, Schulte G, Rawal N, Grahn A, Arenas E. Wnt-5a induces Dishevelled phosphorylation and dopaminergic differentiation via a CK1-dependent mechanism. J Cell Sci. 2007;120(4):586–95.PubMedGoogle Scholar
  41. 41.
    Sato A, Kayama H, Shojima K, Matsumoto S, Koyama H, Minami Y, et al. The Wnt5a-Ror2 axis promotes the signaling circuit between interleukin-12 and interferon-gamma in colitis. Sci Rep-Uk. 2015;5.Google Scholar
  42. 42.
    Burris HA, Flinn IW, Patel MR, Fenske TS, Deng CC, Brander DM, et al. Umbralisib, a novel PI3K delta and casein kinase-1 epsilon inhibitor, in relapsed or refractory chronic lymphocytic leukaemia and lymphoma: an open-label, phase 1, dose-escalation, first-in-human study. Lancet Oncol. 2018;19(4):486–96.PubMedGoogle Scholar
  43. 43.
    Nastoupil LJ, Lunning MA, Vose JM, Schreeder MT, Siddiqi T, Flowers CR, et al. Tolerability and activity of ublituximab, umbralisib, and ibrutinib in patients with chronic lymphocytic leukaemia and non-Hodgkin lymphoma: a phase 1 dose escalation and expansion trial. Lancet Haematol. 2019;6(2):E100–E9.PubMedGoogle Scholar
  44. 44.
    Davids MS, Kim HT, Nicotra A, Savell A, Francoeur K, Hellman JM, et al. Umbralisib in combination with ibrutinib in patients with relapsed or refractory chronic lymphocytic leukaemia or mantle cell lymphoma: a multicentre phase 1-1b study. Lancet Haematol. 2019;6(1):e38–47.PubMedGoogle Scholar
  45. 45.
    Soumerai JD, Pagel JM, Jagadeesh D, Salman HS, Kenkre VP, Asch AS, et al. Initial results of a dose escalation study of a selective and structurally differentiated PI3K delta inhibitor, ME-401, in relapsed/refractory (R/R) follicular lymphoma (FL) and chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL). J Clin Oncol. 2018;36(15).Google Scholar
  46. 46.
    Zelenetz AD, Soumerai JD, Jagadeesh D, Reddy N, Stathis A, Asch AS, et al. Preliminary safety and efficacy results with an intermittent schedule of the PI3k delta inhibitor ME-401 alone or in combination with rituximab for B-cell malignancies. Blood. 2018;132.Google Scholar
  47. 47.
    Younes A, Salles G, Martinelli G, Bociek RG, Barrigon DC, Barca EG, et al. Pan-phosphatidylinositol 3-kinase inhibition with buparlisib in patients with relapsed or refractory non-Hodgkin lymphoma. Haematologica. 2017;102(12):2104–12.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Bendell JC, Rodon J, Burris HA, de Jonge M, Verweij J, Birle D, et al. Phase I, dose-escalation study of BKM120, an oral pan-class I PI3K inhibitor, in patients with advanced solid tumors. J Clin Oncol. 2012;30(3):282–90.PubMedGoogle Scholar
  49. 49.
    Nanni P, Nicoletti G, Palladini A, Croci S, Murgo A, Ianzano ML, et al. Multiorgan metastasis of human HER-2+ breast cancer in Rag2-/-;Il2rg-/- mice and treatment with PI3K inhibitor. PLoS One. 2012;7(6):e39626.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Di Leo A, Johnston S, Lee KS, Ciruelos E, Lonning PE, Janni W, et al. Buparlisib plus fulvestrant in postmenopausal women with hormone-receptor-positive, HER2-negative, advanced breast cancer progressing on or after mTOR inhibition (BELLE-3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2018;19(1):87–100.PubMedGoogle Scholar
  51. 51.
    Baselga J, Im SA, Iwata H, Cortes J, De Laurentiis M, Jiang Z, et al. Buparlisib plus fulvestrant versus placebo plus fulvestrant in postmenopausal, hormone receptor-positive, HER2-negative, advanced breast cancer (BELLE-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017;18(7):904–16.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Phillips TJ, Forero-Torres A, Sher T, Diefenbach CS, Johnston P, Talpaz M, et al. Phase 1 study of the PI3K delta inhibitor INCB040093 +/- JAK1 inhibitor itacitinib in relapsed/refractory B-cell lymphoma. Blood. 2018;132(3):293–306.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Younes A, Berdeja JG, Patel MR, Flinn I, Gerecitano JF, Neelapu SS, et al. Safety, tolerability, and preliminary activity of CUDC-907, a first-in-class, oral, dual inhibitor of HDAC and PI3K, in patients with relapsed or refractory lymphoma or multiple myeloma: an open-label, dose-escalation, phase 1 trial. Lancet Oncol. 2016;17(5):622–31.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Moskowitz AJ, Lunning MA, Horwitz SM. How I treat the peripheral T-cell lymphomas. Blood. 2014;123(17):2636–44.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Horwitz SM, Koch R, Porcu P, Oki Y, Moskowitz A, Perez M, Myskowski P, Officer A, Jaffe JD, Morrow SN, Allen K, Douglas M, Stern H, Sweeney J, Kelly P, Kelly V, Aster JC, Weaver D, Foss FM, Weinstock DM Activity of the PI3K-delta,gamma inhibitor duvelisib in a phase 1 trial and preclinical models of T-cell lymphoma. Blood. 2018;131(8):888–898.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Horwitz SM, Moskowitz AJ, Jacobsen ED, Mehta-Shah N, Khodadoust MS, Fisher DC, et al. The combination of duvelisib, a PI3K-δ,γ inhibitor, and romidepsin is highly active in relapsed/refractory peripheral T-cell lymphoma with low rates of transaminitis: results of parallel multicenter, phase 1 combination studies with expansion cohorts. Blood. 2018;132(Suppl 1):683.Google Scholar
  57. 57.
    Dreyling M, Santoro A, Mollica L, Leppa S, Follows GA, Lenz G, et al. Phosphatidylinositol 3-kinase inhibition by copanlisib in relapsed or refractory indolent lymphoma. J Clin Oncol. 2017;35(35):3898–905.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Memorial Sloan Kettering Cancer Center, Lymphoma ServiceNew YorkUSA

Personalised recommendations