Advertisement

Current Hematologic Malignancy Reports

, Volume 13, Issue 4, pp 289–299 | Cite as

Novel Therapies in Acute Lymphoblastic Leukemia

  • Kathleen W. Phelan
  • Anjali S. Advani
Acute Lymphocytic Leukemias (K Ballen and M Keng, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Acute Lymphocytic Leukemias

Abstract

Purpose of Review

Treatment options for patients with acute lymphoblastic leukemia (ALL) beyond standard chemotherapy have grown significantly in recent years. In this review, we highlight new targeted therapies in ALL, with an emphasis on immunotherapy.

Recent Findings

Major advances include antibody-based therapies, such as naked monoclonal antibodies, antibody-drug conjugates and bispecific T cell engaging (BiTE) antibodies, as well as adoptive cellular therapies such as chimeric antigen receptor (CAR) T cells. Apart from the above immunotherapeutic approaches, other targeted therapies are being employed in Philadelphia chromosome-positive (Ph+) ALL, Philadelphia-like (Ph-like) ALL, and T cell ALL.

Summary

These new treatment strategies are changing the treatment landscape of ALL and challenging the current standard of care. Clinical trials will hopefully help determine how to best incorporate these novel therapies into existing treatment algorithms.

Keywords

Acute lymphoblastic leukemia ALL Adult Treatment Immunotherapy Relapsed/refractory 

Notes

Compliance with Ethical Standards

Conflict of Interest

Kathleen W. Phelan declares that she has no conflict of interest.

Anjali S. Advani has the following financial disclosures: consulting and research support from Pfizer, consulting and honoraria from Novartis, research support from Amgen, and research support from Immunomedics.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Paul S, Kantarjian H, Jabbour EJ. Adult acute lymphoblastic leukemia. Mayo Clin Proc. 2016;91(11):1645–66.CrossRefPubMedGoogle Scholar
  2. 2.
    National Cancer Institute. Cancer stat facts: leukemia-acute lymphocytic leukemia (ALL). Available at: http://seer.cancer.gov/statfacts/html/alyl.html.
  3. 3.
    Hunger SP, Lu X, Devidas M, Camitta BM, Gaynon PS, Winick NJ, et al. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children’s oncology group. J Clin Oncol. 2012;30(14):1663–9.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rowe JM. Prognostic factors in adult acute lymphoblastic leukaemia. Br J Haematol. 2010;150(4):389–405.PubMedGoogle Scholar
  5. 5.
    Jabbour E, O'Brien S, Konopleva M, Kantarjian H. New insights into the pathophysiology and therapy of adult acute lymphoblastic leukemia. Cancer. 2015;121(15):2517–28.CrossRefPubMedGoogle Scholar
  6. 6.
    Thomas DA, O'Brien S, Kantarjian HM. Monoclonal antibody therapy with rituximab for acute lymphoblastic leukemia. Hematol Oncol Clin North Am. 2009;23(5):71.CrossRefGoogle Scholar
  7. 7.
    Raponi S, De Propris MS, Intoppa S, Milani ML, Vitale A, Elia L, et al. Flow cytometric study of potential target antigens (CD19, CD20, CD22, CD33) for antibody-based immunotherapy in acute lymphoblastic leukemia: analysis of 552 cases. Leuk Lymphoma. 2011;52(6):1098–107.CrossRefPubMedGoogle Scholar
  8. 8.
    Thomas DA, O'Brien S, Faderl S, Garcia-Manero G, Ferrajoli A, Wierda W, et al. Chemoimmunotherapy with a modified hyper-CVAD and rituximab regimen improves outcome in de novo Philadelphia chromosome–negative precursor B-lineage acute lymphoblastic leukemia. J Clin Oncol. 2010;28(24):3880–9.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hoelzer D, Gokbuget N. Chemoimmunotherapy in acute lymphoblastic leukemia. Blood Rev. 2012;26(1):25–32.CrossRefPubMedGoogle Scholar
  10. 10.
    Hoelzer D, Huettmann A, Kaul F, Irmer S, Jaekel N, Mohren M, et al. Immunochemotherapy with rituximab improves molecular CR rate and outcome in CD20+ B-lineage standard and high risk patients; results of 263 CD20+ patients studied prospectively in GMALL study 07/2003. Blood. 2010;116(21):170.Google Scholar
  11. 11.
    Maury S, Chevret S, Thomas X, Heim D, Leguay T, Huguet F, et al. Rituximab in B-lineage adult acute lymphoblastic leukemia. N Engl J Med. 2016;375(11):1044–53.CrossRefPubMedGoogle Scholar
  12. 12.
    Gaipa G, Basso G, Maglia O, Leoni V, Faini A, Cazzaniga G, et al. Drug-induced immunophenotypic modulation in childhood ALL: implications for minimal residual disease detection. Leukemia. 2005;19(1):49–56.CrossRefPubMedGoogle Scholar
  13. 13.
    Dworzak MN, Schumich A, Printz D, Potschger U, Husak Z, Attarbaschi A, et al. CD20 up-regulation in pediatric B-cell precursor acute lymphoblastic leukemia during induction treatment: setting the stage for anti-CD20 directed immunotherapy. Blood. 2008;112(10):3982–8.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Awasthi A, Ayello J, Van de Ven C, Elmacken M, Sabulski A, Barth MJ, et al. Obinutuzumab (GA101) compared to rituximab significantly enhances cell death and antibody-dependent cytotoxicity and improves overall survival against CD20(+) rituximab-sensitive/-resistant Burkitt lymphoma (BL) and precursor B-acute lymphoblastic leukaemia (pre-B-ALL): potential targeted therapy in patients with poor risk CD20(+) BL and pre-B-ALL. Br J Haematol. 2015;171(5):763–75.CrossRefPubMedGoogle Scholar
  15. 15.
    Castillo J, Milani C, Mendez-Allwood D. Ofatumumab, a second-generation anti-CD20 monoclonal antibody, for the treatment of lymphoproliferative and autoimmune disorders. Expert Opin Investig Drugs. 2009;18(4):491–500.CrossRefPubMedGoogle Scholar
  16. 16.
    Jabbour E, Kantarjian HM, Thomas DA, Garcia-Manero G, Abi Aad S, Garris R, et al. Phase II study of the hyper-CVAD regimen in combination with ofatumumab as frontline therapy for adults with CD-20 positive ALL. JCO. 2014;32(15):7065.Google Scholar
  17. 17.
    Jabbour E, Kantarjian HM, Thomas DA, Sasaki K, Garcia-Manero G, Garris R, et al. Phase II study of the hyper-CVAD regimen in combination with ofatumumab as frontline therapy for adults with CD-20 positive acute lymphoblastic leukemia (ALL). Blood. 2014;124(21):5277.Google Scholar
  18. 18.
    Herter S, Herting F, Mundigl O, Waldhauer I, Weinzierl T, Fauti T, et al. Preclinical activity of the type II CD20 antibody GA101 (obinutuzumab) compared with rituximab and ofatumumab in vitro and in xenograft models. Mol Cancer Ther. 2013;12(10):2031–42.CrossRefPubMedGoogle Scholar
  19. 19.
    Shah NN, Stevenson MS, Yuan CM, Richards K, Delbrook C, Kreitman RJ, et al. Characterization of CD22 expression in acute lymphoblastic leukemia. Pediatr Blood Cancer. 2015;62(6):964–9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Raetz EA, Cairo MS, Borowitz MJ, Lu X, Devidas M, Reid JM, et al. Re-induction chemoimmunotherapy with epratuzumab in relapsed acute lymphoblastic leukemia (ALL): phase II results from Children’s Oncology Group (COG) study ADVL04P2. Pediatr Blood Cancer. 2015;62(7):1171–5.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Advani AS, McDonough S, Coutre S, Wood B, Radich J, Mims M, et al. SWOG S0910: a phase 2 trial of clofarabine/cytarabine/epratuzumab for relapsed/refractory acute lymphocytic leukaemia. Br J Haematol. 2014;165(4):504–9.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Carnahan J, Wang P, Kendall R, Chen C, Hu S, Boone T, et al. Epratuzumab, a humanized monoclonal antibody targeting CD22: characterization of in vitro properties. Clin Cancer Res. 2003;9(10 Pt 2):90S.Google Scholar
  23. 23.
    Thorson JS, Sievers EL, Ahlert J, Shepard E, Whitwam RE, Onwueme KC, et al. Understanding and exploiting nature's chemical arsenal: the past, present and future of calicheamicin research. Curr Pharm Des. 2000;6(18):1841–79.CrossRefPubMedGoogle Scholar
  24. 24.
    Kantarjian H, Thomas D, Jorgensen J, Jabbour E, Kebriaei P, Rytting M, et al. Inotuzumab ozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. Lancet Oncol. 2012;13(4):403–11.CrossRefPubMedGoogle Scholar
  25. 25.
    Kantarjian H, Thomas D, Jorgensen J, Kebriaei P, Jabbour E, Rytting M, et al. Results of inotuzumab ozogamicin, a CD22 monoclonal antibody, in refractory and relapsed acute lymphocytic leukemia. Cancer. 2013;119(15):2728–36.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Advani AS, Stein AS, Kantarjian HM, Shustov AR, DeAngelo DJ, Ananthakrishnan R, et al. A phase II study of weekly inotuzumab ozogamicin (InO) in adult patients with CD22-positive acute lymphoblastic leukemia (ALL) in second or later salvage. Blood. 2014;124(21):2255.Google Scholar
  27. 27.
    DeAngelo DJ, Stock W, Stein AS, Shustov A, Liedtke M, Schiffer CA, et al. Inotuzumab ozogamicin in adults with relapsed or refractory CD22-positive acute lymphoblastic leukemia: a phase 1/2 study. Blood Adv. 2017;1(15):1167–80.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    • Kantarjian HM, DeAngelo DJ, Stelljes M, Martinelli G, Liedtke M, Stock W, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016;375(8):740–53. Demonstrated higher CR rate and OS in patients with relapsed and refractory ALL who received inotuzumab compared with those who received standard of care chemotherapy CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Topp MS, Kufer P, Gökbuget N, Goebeler M, Klinger M, Neumann S, et al. Targeted therapy with the T-cell–engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol. 2011;29(18):2493–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Topp MS, Gokbuget N, Zugmaier G, Degenhard E, Goebeler ME, Klinger M, et al. Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood. 2012;120(26):5185–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Topp MS, Gökbuget N, Zugmaier G, Klappers P, Stelljes M, Neumann S, et al. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32(36):4134–40.CrossRefGoogle Scholar
  32. 32.
    Topp MS, Gökbuget N, Stein AS, Zugmaier G, O'Brien S, Bargou RC, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16(1):57–66.CrossRefPubMedGoogle Scholar
  33. 33.
    • Kantarjian H, Stein A, Gokbuget N, Fielding AK, Schuh AC, Ribera JM, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med. 2017;376(9):836–47. Demonstrated higher CR rate and OS in patients with relapsed and refractory ALL who received blinatumomab compared with those who received standard of care chemotherapy CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Martinelli G, Boissel N, Chevallier P, Ottmann O, Gokbuget N, Topp MS, et al. Complete hematologic and molecular response in adult patients with relapsed/refractory Philadelphia chromosome-positive B-precursor acute lymphoblastic leukemia following treatment with blinatumomab: results from a phase II, single-arm, multicenter study. J Clin Oncol. 2017;35(16):1795–802.CrossRefPubMedGoogle Scholar
  35. 35.
    DeAngelo DJ. The use of novel monoclonal antibodies in the treatment of acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2015;2015:400–5.PubMedGoogle Scholar
  36. 36.
    Dai H, Wang Y, Lu X, Han W. Chimeric antigen receptors modified T-cells for cancer therapy. JNCI: J Natl Cancer Inst. 2016;108(7):djv439.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Frey N. The what, when and how of CAR T cell therapy for ALL. Best Pract Res Clin Haematol. 2017 Sep;30(3):275–81.CrossRefPubMedGoogle Scholar
  38. 38.
    Maude SL, Shpall EJ, Grupp SA. Chimeric antigen receptor T-cell therapy for ALL. ASH Education Program Book. 2014;2014(1):559–64.Google Scholar
  39. 39.
    Scheuermann RH, Racila E. CD19 antigen in leukemia and lymphoma diagnosis and immunotherapy. Leuk Lymphoma. 1995;18(5–6):385–97.CrossRefPubMedGoogle Scholar
  40. 40.
    Jensen MC, Popplewell L, Cooper LJ, DiGiusto D, Kalos M, Ostberg JR, et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol Blood Marrow Transplant. 2010 Sep;16(9):1245–56.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368(16):1509–18.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Maude SL, Teachey DT, Porter DL, Grupp SA. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood 2015;125 (26):4017–4023.Google Scholar
  43. 43.
    Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ, et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med. 2005;202(7):907–12.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Grupp SA, Maude SL, Shaw PA, Aplenc R, Barrett DM, Callahan C, et al. Durable remissions in children with relapsed/refractory ALL treated with T cells engineered with a CD19-targeted chimeric antigen receptor (CTL019). Blood. 2015;126(23):681.Google Scholar
  45. 45.
    Buechner J, Grupp SA, Maude SL, Boyer M, Bittencourt H, Laetsch Theodore W, et al. Global registration trial of efficacy and safety of CTL019 in pediatric and young adult patients with relapsed/refractory (R/R) acute lymphoblastic leukemia (ALL): update to the interim analysis. 2017; 24Google Scholar
  46. 46.
    Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med. 2013;5(177):177ra38.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Park JH, Riviere I, Gonen M, Wang X, Senechal B, Curran KJ, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–59.CrossRefPubMedGoogle Scholar
  48. 48.
    Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–28.CrossRefPubMedGoogle Scholar
  49. 49.
    Blanc V, Bousseau A, Caron A, Carrez C, Lutz RJ, Lambert JM. SAR3419: an anti-CD19-Maytansinoid Immunoconjugate for the treatment of B-cell malignancies. Clin Cancer Res. 2011;17(20):6448–58.CrossRefPubMedGoogle Scholar
  50. 50.
    Younes A, Kim S, Romaguera J, Copeland A, Farial Sde C, Kwak LW, et al. Phase I multidose-escalation study of the anti-CD19 maytansinoid immunoconjugate SAR3419 administered by intravenous infusion every 3 weeks to patients with relapsed/refractory B-cell lymphoma. J Clin Oncol. 2012;30(22):2776–82.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kantarjian HM, Lioure B, Kim SK, Atallah E, Leguay T, Kelly K, et al. A phase II study of coltuximab ravtansine (SAR3419) monotherapy in patients with relapsed or refractory acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk. 2016;16(3):139–45.CrossRefPubMedGoogle Scholar
  52. 52.
    Fathi AT, Borate U, DeAngelo DJ, O'Brien MM, Trippett T, Shah BD, et al. A phase 1 study of denintuzumab mafodotin (SGN-CD19A) in adults with relapsed or refractory B-lineage acute leukemia (B-ALL) and highly aggressive lymphoma. Blood. 2015;126(23):1328.Google Scholar
  53. 53.
    Hu Y, Turner MJ, Shields J, Gale MS, Hutto E, Roberts BL, et al. Investigation of the mechanism of action of alemtuzumab in a human CD52 transgenic mouse model. Immunology. 2009;128(2):260–70.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Stock W, Sanford B, Lozanski G, Vij R, Byrd JC, Powell BL, et al. Alemtuzumab can be incorporated into front-line therapy of adult acute lymphoblastic leukemia (ALL): final phase I results of a cancer and leukemia group B study (CALGB 10102). Blood. 2009;114(22):838.Google Scholar
  55. 55.
    Geahlen RL. Getting Syk: spleen tyrosine kinase as a therapeutic target. Trends Pharmacol Sci. 2014;35(8):414–22.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Liu D, Mamorska-Dyga A. Syk inhibitors in clinical development for hematological malignancies. J Hematol Oncol. 2017;10(1):1–7.CrossRefGoogle Scholar
  57. 57.
    Rickert RC. New insights into pre-BCR and BCR signalling with relevance to B cell malignancies. Nat Rev Immunol. 2013;13(8):578–91.CrossRefPubMedGoogle Scholar
  58. 58.
    Uckun FM, Qazi S. Spleen tyrosine kinase as a molecular target for treatment of leukemias and lymphomas. Expert Rev Anticancer Ther. 2010;10(9):1407–18.CrossRefPubMedGoogle Scholar
  59. 59.
    Axelrod MJ, Fowles P, Silverman J, Clarke A, Tang J, Rousseau E, et al. The combination of Entospletinib and vincristine demonstrates synergistic activity in a broad panel of hematological cancer cell lines and anti-tumor efficacy in a DLBCL xenograft model. Blood. 2015;126(23):5123.Google Scholar
  60. 60.
    Fielding AK, Rowe JM, Buck G, Foroni L, Gerrard G, Litzow MR, et al. UKALLXII/ECOG 2993: addition of imatinib to a standard treatment regimen enhances long-term outcomes in Philadelphia positive acute lymphoblastic leukemia. Blood. 2014;123(6):843–50.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Thomas DA, Faderl S, Cortes J, O'Brien S, Giles FJ, Kornblau SM, et al. Treatment of Philadelphia chromosome-positive acute lymphocytic leukemia with hyper-CVAD and imatinib mesylate. Blood. 2004;103(12):4396–407.CrossRefPubMedGoogle Scholar
  62. 62.
    Schultz KR, Bowman WP, Aledo A, Slayton WB, Sather H, Devidas M, et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children’s oncology group study. J Clin Oncol. 2009;27(31):5175–81.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Tanguy-Schmidt A, Rousselot P, Chalandon Y, Cayuela JM, Hayette S, Vekemans MC, et al. Long-term follow-up of the imatinib GRAAPH-2003 study in newly diagnosed patients with de novo Philadelphia chromosome-positive acute lymphoblastic leukemia: a GRAALL study. Biol Blood Marrow Transplant. 2013;19(1):150–5.CrossRefPubMedGoogle Scholar
  64. 64.
    Chalandon Y, Thomas X, Hayette S, Cayuela JM, Abbal C, Huguet F, et al. Randomized study of reduced-intensity chemotherapy combined with imatinib in adults with Ph-positive acute lymphoblastic leukemia. Blood. 2015;125(24):3711–9.CrossRefPubMedGoogle Scholar
  65. 65.
    Jones D, Thomas D, Yin CC, O'Brien S, Cortes JE, Jabbour E, et al. Kinase domain point mutations in Philadelphia chromosome-positive acute lymphoblastic leukemia emerge after therapy with BCR-ABL kinase inhibitors. Cancer. 2008;113(5):985–94.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Hantschel O, Rix U, Superti-Furga G. Target spectrum of the BCR-ABL inhibitors imatinib, nilotinib and dasatinib. Leuk Lymphoma. 2008;49(4):615–9.CrossRefPubMedGoogle Scholar
  67. 67.
    Porkka K, Koskenvesa P, Lundan T, Rimpilainen J, Mustjoki S, Smykla R, et al. Dasatinib crosses the blood-brain barrier and is an efficient therapy for central nervous system Philadelphia chromosome-positive leukemia. Blood. 2008;112(4):1005–12.CrossRefPubMedGoogle Scholar
  68. 68.
    Ravandi F, Othus M, O'Brien S, Forman SJ, Ha CS, Wong JYC, et al. Multi-center US intergroup study of intensive chemotherapy plus dasatinib followed by allogeneic stem cell transplant in patients with Philadelphia chromosome positive acute lymphoblastic leukemia younger than 60. Blood. 2015;126(23):796.Google Scholar
  69. 69.
    Rousselot P, Coude MM, Gokbuget N, Gambacorti Passerini C, Hayette S, Cayuela JM, et al. Dasatinib and low-intensity chemotherapy in elderly patients with Philadelphia chromosome-positive ALL. Blood. 2016;128(6):774–82.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Kim DY, Joo YD, Lim SN, Kim SD, Lee JH, Lee JH, et al. Nilotinib combined with multiagent chemotherapy for newly diagnosed Philadelphia-positive acute lymphoblastic leukemia. Blood. 2015;126(6):746–56.CrossRefPubMedGoogle Scholar
  71. 71.
    Jabbour E, Kantarjian H, Ravandi F, Thomas D, Huang X, Faderl S, et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: a single-centre, phase 2 study. Lancet Oncol. 2015;16(15):1547–55.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Sasaki K, Jabbour EJ, Ravandi F, Short NJ, Thomas DA, Garcia-Manero G, et al. Hyper-CVAD plus ponatinib versus hyper-CVAD plus dasatinib as frontline therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: a propensity score analysis. Cancer. 2016;122(23):3650–6.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Wylie AA, Schoepfer J, Jahnke W, Cowan-Jacob SW, Loo A, Furet P, et al. The allosteric inhibitor ABL001 enables dual targeting of BCRABL1. Nature. 2017;543(7647):733–7.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Wylie A, Schoepfer J, Berellini G, Cai H, Caravatti G, Cotesta S, et al. ABL001, a potent allosteric inhibitor of BCR-ABL, prevents emergence of resistant disease when administered in combination with nilotinib in an in vivo murine model of chronic myeloid leukemia. Blood. 2014;124(21):398.Google Scholar
  75. 75.
    • Mullighan CG, Su X, Zhang J, Radtke I, Phillips LA, Miller CB, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009;360(5):470–80. Demonstrated inferior survival rates for Ph-like ALL compared with non-Ph-like ALL patients across all age groups CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Den Boer ML, van Slegtenhorst M, De Menezes RX, Cheok MH, Buijs-Gladdines JG, Peters ST, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10(2):125–34.CrossRefGoogle Scholar
  77. 77.
    Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang Y, Pei D, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;371(11):1005.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Herold T, Baldus CD, Gökbuget N. Ph-like acute lymphoblastic leukemia in older adults. N Engl J Med. 2014;371(23):2235.CrossRefPubMedGoogle Scholar
  79. 79.
    Herold T, Schneider S, Metzeler KH, Neumann M, Hartmann L, Roberts KG, et al. Adults with Philadelphia chromosome-like acute lymphoblastic leukemia frequently have IGH-CRLF2 and JAK2 mutations, persistence of minimal residual disease and poor prognosis. Haematologica. 2017;102(1):130–8.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Boer JM, Marchante JR, Evans WE, Horstmann MA, Escherich G, Pieters R, et al. BCR-ABL1-like cases in pediatric acute lymphoblastic leukemia: a comparison between DCOG/Erasmus MC and COG/St. Jude signatures. Haematologica. 2015;100(9):354.CrossRefGoogle Scholar
  81. 81.
    Jain N, Roberts KG, Jabbour E, Patel K, Eterovic AK, Chen K, et al. Ph-like acute lymphoblastic leukemia: a high-risk subtype in adults. Blood. 2017;129(5):572–81.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Roberts KG, Gu Z, Payne-Turner D, McCastlain K, Harvey RC, Chen I, et al. High frequency and poor outcome of Philadelphia chromosome–like acute lymphoblastic leukemia in adults. J Clin Oncol. 2017;35(4):394–401.CrossRefPubMedGoogle Scholar
  83. 83.
    Harvey RC, Mullighan CG, Chen IM, Wharton W, Mikhail FM, Carroll AJ, et al. Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood. 2010;115(26):5312–21.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Roberts KG. The biology of Philadelphia chromosome-like ALL. Best Pract Res Clin Haematol. 2017;30(3):212–221.Google Scholar
  85. 85.
    Reshmi SC, Harvey RC, Roberts KG, Stonerock E, Smith A, Jenkins H, et al. Targetable kinase gene fusions in high risk B-ALL: a study from the Children’s Oncology Group. Blood. 2017:blood-2016-12-758979.Google Scholar
  86. 86.
    Pui C, Relling MV, Downing JR. Acute lymphoblastic leukemia. N Engl J Med. 2004;350(15):1535–48.CrossRefPubMedGoogle Scholar
  87. 87.
    Ferrando AA. The role of NOTCH1 signaling in T-ALL. Hematology Am Soc Hematol Educ Program. 2009:353–61.Google Scholar
  88. 88.
    Deangelo DJ, Stone RM, Silverman LB, Stock W, Attar EC, Fearen I, et al. A phase I clinical trial of the notch inhibitor MK-0752 in patients with T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) and other leukemias. JCO. 2006;24(18):6585.Google Scholar
  89. 89.
    Real PJ, Ferrando AA. NOTCH inhibition and glucocorticoid therapy in T-cell acute lymphoblastic leukemia. Leukemia. 2009;23(8):1374–7.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Cardinal Bernardin Cancer CenterLoyola University Medical CenterMaywoodUSA
  2. 2.Taussig Cancer CenterCleveland ClinicClevelandUSA

Personalised recommendations