Current Hematologic Malignancy Reports

, Volume 13, Issue 4, pp 275–288 | Cite as

Updates in the Pathology of Precursor Lymphoid Neoplasms in the Revised Fourth Edition of the WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues

  • Christopher Wenzinger
  • Eli Williams
  • Alejandro A. GruEmail author
Acute Lymphocytic Leukemias (K Ballen and M Keng, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Acute Lymphocytic Leukemias


Purpose of Review

Acute lymphoblastic leukemias (ALL) are malignant disorders of immature B or T cells that occur characteristically in children, usually under the age of 6 (75%). Approximately 6000 new cases of ALL are diagnosed each year in the USA, 80–85% of which represent B-ALL forms. Most presentations of B-ALL are leukemic, whereas T-ALL presents with a mediastinal mass, with or without leukemic involvement. The revised fourth edition of the World Health Organization (WHO) classification (2017) has introduced some changes in both B and T-ALL. Here, we summarize the categories of lymphoblastic leukemia/lymphomas as defined by the WHO and recent developments in the understanding of this group of hematologic malignancy.

Recent Findings

Two provisional categories of B-ALL have now been identified including B-ALL, BCR-ABL1-like, and B-ALL with iAMP21. The Philadelphia chromosome-like B-ALL includes forms of the disease that shares the expression profiling of B-ALL with t(9;22) but lack such rearrangement. The second one shows amplification of part of the chromosome 21. Both entities are associated with worse prognosis. Within the T-ALL group, an early precursor T cell form has now been introduced as a provisional category. Such group demonstrates expression of stem cell and myeloid markers in conjunction with the T cell antigens.


The current review summarizes the recent updates to the WHO classification.


Lymphoblastic lymphoma ALL WHO revision Acute leukemia 


Compliance with Ethical Standards

Conflict of Interest

Christopher Wenzinger and Eli Williams declare that they have no conflicts of interest. Alejandro A. Gru, M.D. has consultant and advisory board relationships with Seattle Genetics and Bristol-Myers Squibb.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    •• Jabbour E, O'Brien S, Konopleva M, Kantarjian H. New insights into the pathophysiology and therapy of adult acute lymphoblastic leukemia. Cancer. 2015;121(15):2517–28. An excellent and comprehensive review of the molecular alterations in ALL.Google Scholar
  2. 2.
    Terwilliger T, Abdul-Hay M. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J. 2017;7(6):e577.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    • Borowitz MJ, et al. B-lymphoblastic leukaemia / lymphoma, not otherwise specified. 4th ed. In: Swerdlow SH, International Agency for Research on Cancer., and World Health Organization, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: International Agency for Research on Cancer; 2017. 439 p. This is the current update and revision on the WHO classification of acute lymphoblastic leukemias. Google Scholar
  4. 4.
    Redaelli A, et al. A systematic literature review of the clinical and epidemiological burden of acute lymphoblastic leukaemia (ALL). Eur J Cancer Care (Engl). 2005;14(1):53–62.CrossRefGoogle Scholar
  5. 5.
    Lee P, Bhansali R, Izraeli S, Hijiya N, Crispino JD. The biology, pathogenesis and clinical aspects of acute lymphoblastic leukemia in children with Down syndrome. Leukemia. 2016;30(9):1816–23.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Maloney KW, Taub JW, Ravindranath Y, Roberts I, Vyas P. Down syndrome preleukemia and leukemia. Pediatr Clin N Am. 2015;62(1):121–37.CrossRefGoogle Scholar
  7. 7.
    Buitenkamp TD, Izraeli S, Zimmermann M, Forestier E, Heerema NA, van den Heuvel-Eibrink MM, et al. Acute lymphoblastic leukemia in children with Down syndrome: a retrospective analysis from the Ponte di Legno study group. Blood. 2014;123(1):70–7.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Walsh KM, de Smith AJ, Welch TC, Smirnov I, Cunningham MJ, Ma X, et al. Genomic ancestry and somatic alterations correlate with age at diagnosis in Hispanic children with B-cell acute lymphoblastic leukemia. Am J Hematol. 2014;89(7):721–5.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Hyde RK, Liu PP. Germline PAX5 mutations and B cell leukemia. Nat Genet. 2013;45(10):1104–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Noetzli L, Lo RW, Lee-Sherick AB, Callaghan M, Noris P, Savoia A, et al. Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nat Genet. 2015;47(5):535–8.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Momota H, Nariata Y, Miyakita Y, Hosono A, Makimoto A, Shibui S. Acute lymphoblastic leukemia after temozolomide treatment for anaplastic astrocytoma in a child with a germline TP53 mutation. Pediatr Blood Cancer. 2010;55(3):577–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Borowitz MJ, et al. T-lymphoblastic leukaemia/lymphoma. 4th ed. In: Swerdlow SH, International Agency for Research on Cancer, and World Health Organization, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: International Agency for Research on Cancer; 2017. 439 p.Google Scholar
  13. 13.
    Murphy SB. Childhood non-Hodgkin's lymphoma. N Engl J Med. 1978;299(26):1446–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Li Y, Gupta G, Molofsky A, Xie Y, Shihabi N, McCormick J, et al. B Lymphoblastic leukemia/lymphoma with Burkitt-like morphology and IGH/MYC rearrangement: report of 3 cases in adult patients. Am J Surg Pathol. 2018;42(2):269–76.PubMedCrossRefGoogle Scholar
  15. 15.
    Nanua S, Bartlett NL, Hassan A, Robirds D, Branson J, Frater JL, et al. Composite diffuse large B-cell lymphoma and precursor B lymphoblastic lymphoma presenting as a double-hit lymphoma with MYC and BCL2 translocation. J Clin Pathol. 2011;64(11):1032–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Borowitz MJ, et al. B-lymphoblastic leukaemia/lymphoma with recurrent genetic abnormalities. 4th ed. In: Swerdlow SH, International Agency for Research on Cancer., and World Health Organization, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: International Agency for Research on Cancer; 2017. 439 p.Google Scholar
  17. 17.
    Cerezo L, Shuster JJ, Pullen DJ, Brock B, Borowitz MJ, Falletta JM, et al. Laboratory correlates and prognostic significance of granular acute lymphoblastic leukemia in children. A Pediatric Oncology Group study. Am J Clin Pathol. 1991;95(4):526–31.PubMedCrossRefGoogle Scholar
  18. 18.
    Stein P, Peiper S, Butler D, Melvin S, Williams D, Stass S. Granular acute lymphoblastic leukemia. Am J Clin Pathol. 1983;80(4):545.PubMedCrossRefGoogle Scholar
  19. 19.
    Cortelazzo S, Ponzoni M, Ferreri AJM, Hoelzer D. Lymphoblastic lymphoma. Crit Rev Oncol Hematol. 2011;79(3):330–43.PubMedCrossRefGoogle Scholar
  20. 20.
    Yue Q, et al. T-Cell acute lymphoid leukemia resembling Burkitt leukemia cell morphology: a case report. Oncol Lett. 2015;9(3):1236–8.PubMedCrossRefGoogle Scholar
  21. 21.
    van der Velden VH, et al. TCRB gene rearrangements in childhood and adult precursor-B-ALL: frequency, applicability as MRD-PCR target, and stability between diagnosis and relapse. Leukemia. 2004;18(12):1971–80.PubMedCrossRefGoogle Scholar
  22. 22.
    Dong M, Zhang X, Yang Z, Wu S, Ma M, Li Z, et al. Patients over 40 years old with precursor T-cell lymphoblastic lymphoma have different prognostic factors comparing to the youngers. Sci Rep. 2018;8(1):1088.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Oberley MJ, Li S, Orgel E, Phei Wee C, Hagiya A, O’Gorman MRG. Clinical significance of isolated myeloperoxidase expression in pediatric B-lymphoblastic leukemia. Am J Clin Pathol. 2017;147(4):374–81.PubMedCrossRefGoogle Scholar
  24. 24.
    Loghavi S, Kutok JL, Jorgensen JL. B-Acute lymphoblastic leukemia/lymphoblastic lymphoma. Am J Clin Pathol. 2015;144(3):393–410.PubMedCrossRefGoogle Scholar
  25. 25.
    Chantepie SP, Cornet E, Salaün V, Reman O. Hematogones: an overview. Leuk Res. 2013;37(11):1404–11.PubMedCrossRefGoogle Scholar
  26. 26.
    Coustan-Smith E, Song G, Clark C, Key L, Liu P, Mehrpooya M, et al. New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood. 2011;117(23):6267–76.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Shaver AC, Seegmiller AC. B Lymphoblastic leukemia minimal residual disease assessment by flow cytometric analysis. Clin Lab Med. 2017;37(4):771–85.PubMedCrossRefGoogle Scholar
  28. 28.
    Fischer U, Forster M, Rinaldi A, Risch T, Sungalee S, Warnatz HJ, et al. Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options. Nat Genet. 2015;47(9):1020–9.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Panagopoulos I, Micci F, Thorsen J, Haugom L, Tierens A, Ulvmoen A, et al. A novel TCF3-HLF fusion transcript in acute lymphoblastic leukemia with a t(17;19)(q22;p13). Cancer Genet. 2012;205(12):669–72.PubMedCrossRefGoogle Scholar
  30. 30.
    Armstrong GT, Chen Y, Yasui Y, Leisenring W, Gibson TM, Mertens AC, et al. Reduction in late mortality among 5-year survivors of childhood Cancer. N Engl J Med. 2016;374(9):833–42.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N Engl J Med. 2015;373(16):1541–52.PubMedCrossRefGoogle Scholar
  32. 32.
    Reshmi SC, Harvey RC, Roberts KG, Stonerock E, Smith A, Jenkins H, et al. Targetable kinase gene fusions in high-risk B-ALL: a study from the Children's oncology group. Blood. 2017;129(25):3352–61.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Gao C, Zhao XX, Li WJ, Cui L, Zhao W, Liu SG, et al. Clinical features, early treatment responses, and outcomes of pediatric acute lymphoblastic leukemia in China with or without specific fusion transcripts: a single institutional study of 1,004 patients. Am J Hematol. 2012;87(11):1022–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Gaikwad AS, et al. Expression of CD25 is a specific and relatively sensitive marker for the Philadelphia chromosome (BCR-ABL1) translocation in pediatric B acute lymphoblastic leukemia. Int J Clin Exp Pathol. 2014;7(9):6225–30.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Owaidah TM, Rawas FI, al khayatt MF, Elkum NB. Expression of CD66c and CD25 in acute lymphoblastic leukemia as a predictor of the presence of BCR/ABL rearrangement. Hematol Oncol Stem Cell Ther. 2008;1(1):34–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Beldjord K, Chevret S, Asnafi V, Huguet F, Boulland ML, Leguay T, et al. Oncogenetics and minimal residual disease are independent outcome predictors in adult patients with acute lymphoblastic leukemia. Blood. 2014;123(24):3739–49.PubMedCrossRefGoogle Scholar
  37. 37.
    Marks DI, Moorman AV, Chilton L, Paietta E, Enshaie A, DeWald G, et al. The clinical characteristics, therapy and outcome of 85 adults with acute lymphoblastic leukemia and t(4;11)(q21;q23)/MLL-AFF1 prospectively treated in the UKALLXII/ECOG2993 trial. Haematologica. 2013;98(6):945–52.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Marschalek R. Mechanisms of leukemogenesis by MLL fusion proteins. Br J Haematol. 2011;152(2):141–54.PubMedCrossRefGoogle Scholar
  39. 39.
    Mohan M, Lin C, Guest E, Shilatifard A. Licensed to elongate: a molecular mechanism for MLL-based leukaemogenesis. Nat Rev Cancer. 2010;10(10):721–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Sanjuan-Pla A, Bueno C, Prieto C, Acha P, Stam RW, Marschalek R, et al. Revisiting the biology of infant t(4;11)/MLL-AF4+ B-cell acute lymphoblastic leukemia. Blood. 2015;126(25):2676–85.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Lafage-Pochitaloff M, Baranger L, Hunault M, Cuccuini W, Lefebvre C, Bidet A, et al. Impact of cytogenetic abnormalities in adults with Ph-negative B-cell precursor acute lymphoblastic leukemia. Blood. 2017;130(16):1832–44.PubMedCrossRefGoogle Scholar
  42. 42.
    Moorman AV, Enshaei A, Schwab C, Wade R, Chilton L, Elliott A, et al. A novel integrated cytogenetic and genomic classification refines risk stratification in pediatric acute lymphoblastic leukemia. Blood. 2014;124(9):1434–44.PubMedCrossRefGoogle Scholar
  43. 43.
    Sun C, Chang L, Zhu X. Pathogenesis of ETV6/RUNX1-positive childhood acute lymphoblastic leukemia and mechanisms underlying its relapse. Oncotarget. 2017;8(21):35445–59.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Look AT, Roberson PK, Williams DL, Rivera G, Bowman WP, Pui CH, et al. Prognostic importance of blast cell DNA content in childhood acute lymphoblastic leukemia. Blood. 1985;65(5):1079–86.PubMedGoogle Scholar
  45. 45.
    Pui CH, Raimondi SC, Dodge RK, Rivera GK, Fuchs LA, Abromowitch M, et al. Prognostic importance of structural chromosomal abnormalities in children with hyperdiploid (greater than 50 chromosomes) acute lymphoblastic leukemia. Blood. 1989;73(7):1963–7.PubMedGoogle Scholar
  46. 46.
    Smets LA, Slater RM, Behrendt H, van't Veer MB, Homan-Blok J. Phenotypic and karyotypic properties of hyperdiploid acute lymphoblastic leukaemia of childhood. Br J Haematol. 1985;61(1):113–23.PubMedCrossRefGoogle Scholar
  47. 47.
    Blandin AT, Mühlematter D, Bougeon S, Gogniat C, Porter S, Beyer V, et al. Automated four-color interphase fluorescence in situ hybridization approach for the simultaneous detection of specific aneuploidies of diagnostic and prognostic significance in high hyperdiploid acute lymphoblastic leukemia. Cancer Genet Cytogenet. 2008;186(2):69–77.PubMedCrossRefGoogle Scholar
  48. 48.
    Paulsson K, Forestier E, Andersen MK, Autio K, Barbany G, Borgström G, et al. High modal number and triple trisomies are highly correlated favorable factors in childhood B-cell precursor high hyperdiploid acute lymphoblastic leukemia treated according to the NOPHO ALL 1992/2000 protocols. Haematologica. 2013;98(9):1424–32.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Vojcek A, Pajor G, Alpár D, Mátics R, Pótó L, Szuhai K, et al. Conserved hierarchical gain of chromosome 4 is an independent prognostic factor in high hyperdiploid pediatric acute lymphoblastic leukemia. Leuk Res. 2017;52:28–33.PubMedCrossRefGoogle Scholar
  50. 50.
    Holmfeldt L, Wei L, Diaz-Flores E, Walsh M, Zhang J, Ding L, et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet. 2013;45(3):242–52.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Safavi S, Paulsson K. Near-haploid and low-hypodiploid acute lymphoblastic leukemia: two distinct subtypes with consistently poor prognosis. Blood. 2017;129(4):420–3.PubMedCrossRefGoogle Scholar
  52. 52.
    Safavi S, Olsson L, Biloglav A, Veerla S, Blendberg M, Tayebwa J, et al. Genetic and epigenetic characterization of hypodiploid acute lymphoblastic leukemia. Oncotarget. 2015;6(40):42793–802.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Bomken S, Haigh S, Bown N, Carey P, Wood K, Windebank K. Cutaneous B-lymphoblastic lymphoma with IL3/IgH translocation presenting with hypereosinophilia and acute endocarditis. Pediatr Blood Cancer. 2015;62(6):1055–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Familiades J, Bousquet M, Lafage-Pochitaloff M, Béné MC, Beldjord K, de Vos J, et al. PAX5 mutations occur frequently in adult B-cell progenitor acute lymphoblastic leukemia and PAX5 haploinsufficiency is associated with BCR-ABL1 and TCF3-PBX1 fusion genes: a GRAALL study. Leukemia. 2009;23(11):1989–98.PubMedCrossRefGoogle Scholar
  55. 55.
    Felice MS, Gallego MS, Alonso CN, Alfaro EM, Guitter MR, Bernasconi AR, et al. Prognostic impact of t(1;19)/ TCF3-PBX1 in childhood acute lymphoblastic leukemia in the context of Berlin-Frankfurt-Munster-based protocols. Leuk Lymphoma. 2011;52(7):1215–21.PubMedCrossRefGoogle Scholar
  56. 56.
    Deucher AM, Qi Z, Yu J, George TI, Etzell JE. BCL6 expression correlates with the t(1;19) translocation in B-lymphoblastic leukemia. Am J Clin Pathol. 2015;143(4):547–57.PubMedCrossRefGoogle Scholar
  57. 57.
    Boer JM, Koenders JE, van der Holt B, Exalto C, Sanders MA, Cornelissen JJ, et al. Expression profiling of adult acute lymphoblastic leukemia identifies a BCR-ABL1-like subgroup characterized by high non-response and relapse rates. Haematologica. 2015;100(7):e261–4.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Tasian SK, Loh ML, Hunger SP. Philadelphia chromosome-like acute lymphoblastic leukemia. Blood. 2017;130(19):2064–72.PubMedCrossRefGoogle Scholar
  59. 59.
    Konoplev S, Lu X, Konopleva M, Jain N, Ouyang J, Goswami M, et al. CRLF2-positive B-cell acute lymphoblastic leukemia in adult patients: a single-institution experience. Am J Clin Pathol. 2017;147(4):357–63.PubMedCrossRefGoogle Scholar
  60. 60.
    Boer JM, den Boer ML. BCR-ABL1-like acute lymphoblastic leukaemia: from bench to bedside. Eur J Cancer. 2017;82:203–18.PubMedCrossRefGoogle Scholar
  61. 61.
    Boer JM, Steeghs EM, Marchante JR, Boeree A, Beaudoin JJ, Beverloo HB, et al. Tyrosine kinase fusion genes in pediatric BCR-ABL1-like acute lymphoblastic leukemia. Oncotarget. 2017;8(3):4618–28.PubMedCrossRefGoogle Scholar
  62. 62.
    Loh ML, Zhang J, Harvey RC, Roberts K, Payne-Turner D, Kang H, et al. Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children’s Oncology Group TARGET Project. Blood. 2013;121(3):485–8.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Herold T, Gokbuget N. Philadelphia-like acute lymphoblastic leukemia in adults. Curr Oncol Rep. 2017;19(5):31.PubMedCrossRefGoogle Scholar
  64. 64.
    Roberts KG, Pei D, Campana D, Payne-Turner D, Li Y, Cheng C, et al. Outcomes of children with BCR-ABL1-like acute lymphoblastic leukemia treated with risk-directed therapy based on the levels of minimal residual disease. J Clin Oncol. 2014;32(27):3012–20.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    van der Veer A, Waanders E, Pieters R, Willemse ME, van Reijmersdal SV, Russell LJ, et al. Independent prognostic value of BCR-ABL1-like signature and IKZF1 deletion, but not high CRLF2 expression, in children with B-cell precursor ALL. Blood. 2013;122(15):2622–9.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Den Boer ML, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10(2):125–34.CrossRefGoogle Scholar
  67. 67.
    Harrison CJ, et al. An international study of intrachromosomal amplification of chromosome 21 (iAMP21): cytogenetic characterization and outcome. Leukemia. 2014;28(5):1015–21.PubMedCrossRefGoogle Scholar
  68. 68.
    Harrison CJ. Blood spotlight on iAMP21 acute lymphoblastic leukemia (ALL), a high-risk pediatric disease. Blood. 2015;125(9):1383–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Strefford JC, van Delft FW, Robinson HM, Worley H, Yiannikouris O, Selzer R, et al. Complex genomic alterations and gene expression in acute lymphoblastic leukemia with intrachromosomal amplification of chromosome 21. Proc Natl Acad Sci U S A. 2006;103(21):8167–72.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Heerema NA, Carroll AJ, Devidas M, Loh ML, Borowitz MJ, Gastier-Foster JM, et al. Intrachromosomal amplification of chromosome 21 is associated with inferior outcomes in children with acute lymphoblastic leukemia treated in contemporary standard-risk children's oncology group studies: a report from the children's oncology group. J Clin Oncol. 2013;31(27):3397–402.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Johnson RC, Weinberg OK, Cascio MJ, Dahl GV, Mitton BA, Silverman LB, et al. Cytogenetic variation of B-lymphoblastic leukemia with intrachromosomal amplification of chromosome 21 (iAMP21): a multi-institutional series review. Am J Clin Pathol. 2015;144(1):103–12.PubMedCrossRefGoogle Scholar
  72. 72.
    Moorman AV, Richards SM, Robinson HM, Strefford JC, Gibson BES, Kinsey SE, et al. Prognosis of children with acute lymphoblastic leukemia (ALL) and intrachromosomal amplification of chromosome 21 (iAMP21). Blood. 2007;109(6):2327–30.PubMedCrossRefGoogle Scholar
  73. 73.
    Attarbaschi A, Mann G, Panzer-Grümayer R, Röttgers S, Steiner M, König M, et al. Minimal residual disease values discriminate between low and high relapse risk in children with B-cell precursor acute lymphoblastic leukemia and an intrachromosomal amplification of chromosome 21: the Austrian and German acute lymphoblastic leukemia Berlin-Frankfurt-Munster (ALL-BFM) trials. J Clin Oncol. 2008;26(18):3046–50.PubMedCrossRefGoogle Scholar
  74. 74.
    Ryan SL, Matheson E, Grossmann V, Sinclair P, Bashton M, Schwab C, et al. The role of the RAS pathway in iAMP21-ALL. Leukemia. 2016;30(9):1824–31.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Rappaport H, Machover D, Bearman R, Nathwani B, Lemaigre MG, Santelli G, et al. Histopathology of the thymus of patients with acute lymphoblastic leukemia and lymphoblastic lymphoma in complete clinical remission. Blood. 1981;58(4):852–5.PubMedGoogle Scholar
  76. 76.
    Slater DE, Mertelsmann R, Koziner B, Higgins C, McKenzie S, Schauer P, et al. Lymphoblastic lymphoma in adults. J Clin Oncol. 1986;4(1):57–67.PubMedCrossRefGoogle Scholar
  77. 77.
    Larson Gedman A, Chen Q, Kugel Desmoulin S, Ge Y, LaFiura K, Haska CL, et al. The impact of NOTCH1, FBW7 and PTEN mutations on prognosis and downstream signaling in pediatric T-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Leukemia. 2009;23(8):1417–25.PubMedCrossRefGoogle Scholar
  78. 78.
    Schneider NR, Carroll AJ, Shuster JJ, Pullen DJ, Link MP, Borowitz MJ, et al. New recurring cytogenetic abnormalities and association of blast cell karyotypes with prognosis in childhood T-cell acute lymphoblastic leukemia: a pediatric oncology group report of 343 cases. Blood. 2000;96(7):2543–9.PubMedGoogle Scholar
  79. 79.
    Raetz EA, Teachey DT. T-cell acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2016;2016(1):580–8.PubMedGoogle Scholar
  80. 80.
    Jackson CC, Medeiros LJ, Miranda RN. 8p11 myeloproliferative syndrome: a review. Hum Pathol. 2010;41(4):461–76.PubMedCrossRefGoogle Scholar
  81. 81.
    Vega F, Jeffrey Medeiros L, Davuluri R, Cromwell CC, Alkan S, Abruzzo LV. t(8;13)-positive bilineal lymphomas: report of 6 cases. Am J Surg Pathol. 2008;32(1):14–20.PubMedCrossRefGoogle Scholar
  82. 82.
    Jain P, Kantarjian H, Jabbour E, Kanagal-Shamanna R, Patel K, Pierce S, et al. Clinical characteristics of Philadelphia positive T-cell lymphoid leukemias-(De novo and blast phase CML). Am J Hematol. 2017;92(1):E3–4.PubMedCrossRefGoogle Scholar
  83. 83.
    Bornschein S, et al. Defining the molecular basis of oncogenic cooperation between TAL1 expression and Pten deletion in T-ALL using a novel pro-T-cell model system. Leukemia. 2017Google Scholar
  84. 84.
    Chen B, Jiang L, Zhong ML, Li JF, Li BS, Peng LJ, et al. Identification of fusion genes and characterization of transcriptome features in T-cell acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 2018;115(2):373–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Paietta E, Ferrando AA, Neuberg D, Bennett JM, Racevskis J, Lazarus H, et al. Activating FLT3 mutations in CD117/KIT(+) T-cell acute lymphoblastic leukemias. Blood. 2004;104(2):558–60.PubMedCrossRefGoogle Scholar
  86. 86.
    Hoehn D, Medeiros LJ, Chen SS, Tian T, Jorgensen JL, Ahmed Y, et al. CD117 expression is a sensitive but nonspecific predictor of FLT3 mutation in T acute lymphoblastic leukemia and T/myeloid acute leukemia. Am J Clin Pathol. 2012;137(2):213–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Shimizu H, Handa H, Hatsumi N, Takada S, Saitoh T, Sakura T, et al. Distinctive disease subgroups according to differentiation stages in adult patients with T-cell acute lymphoblastic leukemia. Eur J Haematol. 2013;90(4):301–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Xicoy B, et al. Prognostic influence of immunological subtypes of T-cell acute lymphoblastic leukemia. Study of 81 patients. Med Clin (Barc). 2006;126(2):41–6.CrossRefGoogle Scholar
  89. 89.
    de Villartay JP, Pullman AB, Andrade R, Tschachler E, Colamenici O, Neckers L, et al. Gamma/delta lineage relationship within a consecutive series of human precursor T-cell neoplasms. Blood. 1989;74(7):2508–18.PubMedGoogle Scholar
  90. 90.
    Picker LJ, Brenner MB, Michie S, Warnke RA. Expression of T cell receptor delta chains in benign and malignant T lineage lymphoproliferations. Am J Pathol. 1988;132(3):401–5.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Girardi T, Vicente C, Cools J, de Keersmaecker K. The genetics and molecular biology of T-ALL. Blood. 2017;129(9):1113–23.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet. 2017;49(8):1211–8.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    La Starza R, et al. Genetic profile of T-cell acute lymphoblastic leukemias with MYC translocations. Blood. 2014;124(24):3577–82.PubMedCrossRefGoogle Scholar
  94. 94.
    Della Gatta G, Palomero T, Perez-Garcia A, Ambesi-Impiombato A, Bansal M, Carpenter ZW, et al. Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL. Nat Med. 2012;18(3):436–40.PubMedCrossRefGoogle Scholar
  95. 95.
    Cauwelier B, Cavé H, Gervais C, Lessard M, Barin C, Perot C, et al. Clinical, cytogenetic and molecular characteristics of 14 T-ALL patients carrying the TCRbeta-HOXA rearrangement: a study of the Groupe Francophone de Cytogenetique Hematologique. Leukemia. 2007;21(1):121–8.PubMedCrossRefGoogle Scholar
  96. 96.
    De Keersmaecker K, Ferrando AA. TLX1-induced T-cell acute lymphoblastic leukemia. Clin Cancer Res. 2011;17(20):6381–6.PubMedCrossRefGoogle Scholar
  97. 97.
    Karrman K, Forestier E, Heyman M, Andersen MK, Autio K, Blennow E, et al. Clinical and cytogenetic features of a population-based consecutive series of 285 pediatric T-cell acute lymphoblastic leukemias: rare T-cell receptor gene rearrangements are associated with poor outcome. Genes Chromosom Cancer. 2009;48(9):795–805.PubMedCrossRefGoogle Scholar
  98. 98.
    Sanchez-Martin M, Ferrando A. The NOTCH1-MYC highway toward T-cell acute lymphoblastic leukemia. Blood. 2017;129(9):1124–33.PubMedCrossRefGoogle Scholar
  99. 99.
    Yuan L, Lu L, Yang Y, Sun H, Chen X, Huang Y, et al. Genetic mutational profiling analysis of T cell acute lymphoblastic leukemia reveal mutant FBXW7 as a prognostic indicator for inferior survival. Ann Hematol. 2015;94(11):1817–28.PubMedCrossRefGoogle Scholar
  100. 100.
    Velankar MM, Nathwani BN, Schlutz MJ, Bain LA, Arber DA, Slovak ML, et al. Indolent T-lymphoblastic proliferation: report of a case with a 16-year course without cytotoxic therapy. Am J Surg Pathol. 1999;23(8):977–81.PubMedCrossRefGoogle Scholar
  101. 101.
    Strauchen JA, Miller LK. Terminal deoxynucleotidyl transferase-positive cells in human tonsils. Am J Clin Pathol. 2001;116(1):12–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Ohgami RS, Zhao S, Ohgami JK, Leavitt MO, Zehnder JL, West RB, et al. TdT+ T-lymphoblastic populations are increased in Castleman disease, in Castleman disease in association with follicular dendritic cell tumors, and in angioimmunoblastic T-cell lymphoma. Am J Surg Pathol. 2012;36(11):1619–28.PubMedCrossRefGoogle Scholar
  103. 103.
    Ohgami RS, Arber DA, Zehnder JL, Natkunam Y, Warnke RA. Indolent T-lymphoblastic proliferation (iT-LBP): a review of clinical and pathologic features and distinction from malignant T-lymphoblastic lymphoma. Adv Anat Pathol. 2013;20(3):137–40.PubMedCrossRefGoogle Scholar
  104. 104.
    Hellman C, Nicole Marcogliese A, Djokic M, Roth CG. CD123 Immunohistochemical expression is a specific but insensitive marker of early T-precursor leukemia. Appl Immunohistochem Mol Morphol. 2016;24(1):e4–5.PubMedCrossRefGoogle Scholar
  105. 105.
    Patrick K, Wade R, Goulden N, Mitchell C, Moorman AV, Rowntree C, et al. Outcome for children and young people with early T-cell precursor acute lymphoblastic leukaemia treated on a contemporary protocol, UKALL 2003. Br J Haematol. 2014;166(3):421–4.PubMedCrossRefGoogle Scholar
  106. 106.
    Coustan-Smith E, Mullighan CG, Onciu M, Behm FG, Raimondi SC, Pei D, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10(2):147–56.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481(7380):157–63.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Borowitz MJ, et al. NK-lymphoblastic leukaemia/lymphoma 4th ed. In: Swerdlow SH, International Agency for Research on Cancer., and World Health Organization, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: International Agency for Research on Cancer; 2017. 439 p.Google Scholar
  109. 109.
    Guan XQ, Xu L, Ke ZY, Huang LB, Zhang XL, Zhang YC, et al. Five Chinese pediatric patients with leukemias possibly arising from immature natural killer cells: clinical features and courses. Pediatr Hematol Oncol. 2011;28(3):187–93.PubMedCrossRefGoogle Scholar
  110. 110.
    Lin CW, Liu TY, Chen SU, Wang KT, Medeiros LJ, Hsu SM. CD94 1A transcripts characterize lymphoblastic lymphoma/leukemia of immature natural killer cell origin with distinct clinical features. Blood. 2005;106(10):3567–74.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Christopher Wenzinger
    • 1
  • Eli Williams
    • 1
  • Alejandro A. Gru
    • 2
    Email author
  1. 1.Department of PathologyUniversity of VirginiaCharlottesvilleUSA
  2. 2.Departments of Pathology & DermatologyUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations