Advertisement

The Role of Troponin for Acute Heart Failure

  • Nicholas HarrisonEmail author
  • Mark Favot
  • Phillip Levy
Emergency Medicine (F Peacock, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Emergency Medicine

Abstract

Purpose of Review

To review the mechanisms, clinical interpretation, prognostic role, and future research regarding cardiac troponin (cTn) in the assessment of acute heart failure (AHF) patients presenting to the emergency department (ED).

Recent Findings

cTn has become a necessary component of the evaluation of AHF patients in the ED, largely because of its independently predictive value as a prognosticator of poor outcome. High-sensitivity assays (hs-cTn) may add risk stratification value beyond conventional assays, specifically with regard to identifying low-risk AHF patients. Moreover, as the complex mechanisms of cTn release in AHF continue to be elucidated, recent studies suggest that many of the key hemodynamic derangements that define specific AHF syndromes may also be direct culprits in cTn release.

Summary

cTn is released in AHF in response to both non-ischemic (e.g., increased afterload, increased preload, inflammatory signaling, altered calcium handling) and ischemic mechanisms. cTn detectable on conventional sensitivity assays predicts poor prognosis when measured in the ED or when noted in historical data such as past ED visits or at the time of discharge from the most recent AHF hospitalization. hs-cTn assays provide detectable values in nearly all AHF patients. Evidence is evolving on using hs-cTn levels below the upper limit of normal to potentially identify low-risk ED patients, and further research is needed. Among the classically cited risk factors for AHF mortality, cTn and natriuretic peptides stand as independent and synergistic prognostic factors even after adjustment for confounders. Many other risk factors, such as ejection fraction, often failed to retain ED prognostic value beyond these two biomarkers.

Keywords

Acute heart failure Emergency department Risk stratification Troponin Cardiac biomarkers Decompensated heart failure 

Notes

Compliance with Ethical Standards

Conflict of Interest

Nicholas Harrison and Mark Favot each declare no potential conflicts of interest. Phillip Levy reports grants from Roche Diagnostics, Beckman Coulter, and Arterez, LLC. And personal fees from Siemens, Roche Diagnostics, Ortho Diagnostics, and Arterez, LLC.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Executive summary: heart disease and stroke statistics--2016 update: a report from the American Heart Association. Circulation. 2016;133(4):447–54.  https://doi.org/10.1161/cir.0000000000000366.CrossRefPubMedGoogle Scholar
  2. 2.
    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18(8):891–975.  https://doi.org/10.1002/ejhf.592.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017;136(6):e137–e61.  https://doi.org/10.1161/cir.0000000000000509.
  4. 4.
    Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128(16):e240–327.  https://doi.org/10.1161/CIR.0b013e31829e8776.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Katus HA, Remppis A, Looser S, Hallermeier K, Scheffold T, Kubler W. Enzyme linked immuno assay of cardiac troponin T for the detection of acute myocardial infarction in patients. J Mol Cell Cardiol. 1989;21(12):1349–53.CrossRefGoogle Scholar
  6. 6.
    Ebashi S. Third component participating in the super precipitation of ‘natural actomyosin’. Nature. 1963;200:1010.CrossRefGoogle Scholar
  7. 7.
    Cummins P, McGurk B, Littler W. Possible diagnostic use of cardiac specific contractile proteins in assessing cardiac damage. Clin Sci. 1979;56:30.Google Scholar
  8. 8.
    Eggers KM, Lindahl B. Application of cardiac troponin in cardiovascular diseases other than acute coronary syndrome. Clin Chem. 2017;63(1):223–35.CrossRefGoogle Scholar
  9. 9.
    • Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth universal definition of myocardial infarction (2018). J Am Coll Cardiol. 2018;72:2231–64.  https://doi.org/10.1016/j.jacc.2018.08.1038. This consensus guideline is the first to differentiate cTn elevation due to myocardial infarction from myocardial injury. This distinction is key to the basic framework of cTn release in AHF, and the paper give a good starting point for understanding why cTn release in AHF can be a result of both injury and infarction.
  10. 10.
    Missov E, Calzolari C, Pau B. Circulating cardiac troponin I in severe congestive heart failure. Circulation. 1997;96(9):2953–8.CrossRefGoogle Scholar
  11. 11.
    La Vecchia L, Mezzena G, Ometto R, Finocchi G, Bedogni F, Soffiati G, et al. Detectable serum troponin I in patients with heart failure of nonmyocardial ischemic origin. Am J Cardiol. 1997;80(1):88–90.CrossRefGoogle Scholar
  12. 12.
    Arnadottir A, Falk Klein C, Iversen K. Head-to-head comparison of cardiac troponin T and troponin I in patients without acute coronary syndrome: a systematic review. Biomarkers. 2017;22(8):701–8.  https://doi.org/10.1080/1354750x.2017.1335779.CrossRefPubMedGoogle Scholar
  13. 13.
    Wu AHB, Christenson RH, Greene DN, Jaffe AS, Kavsak PA, Ordonez-Llanos J, et al. Clinical laboratory practice recommendations for the use of cardiac troponin in acute coronary syndrome: expert opinion from the Academy of the American Association for Clinical Chemistry and the Task Force on Clinical Applications of Cardiac Bio-Markers of the International Federation of Clinical Chemistry and Laboratory Medicine. Clin Chem. 2018;64(4):645–55.  https://doi.org/10.1373/clinchem.2017.277186.
  14. 14.
    Apple FS, Collinson PO. Analytical characteristics of high-sensitivity cardiac troponin assays. Clin Chem. 2012;58(1):54–61.  https://doi.org/10.1373/clinchem.2011.165795.CrossRefPubMedGoogle Scholar
  15. 15.
    Apple FS, Sandoval Y, Jaffe AS, Ordonez-Llanos J. Cardiac troponin assays: guide to understanding analytical characteristics and their impact on clinical care. Clin Chem. 2017;63(1):73–81.  https://doi.org/10.1373/clinchem.2016.255109.CrossRefPubMedGoogle Scholar
  16. 16.
    Apple FS, Ler R, Murakami MM. Determination of 19 cardiac troponin I and T assay 99th percentile values from a common presumably healthy population. Clin Chem. 2012;58(11):1574–81.  https://doi.org/10.1373/clinchem.2012.192716.CrossRefPubMedGoogle Scholar
  17. 17.
    • Weil BR, Suzuki G, Young RF, Iyer V, Canty JM Jr. Troponin release and reversible left ventricular dysfunction after transient pressure overload. J Am Coll Cardiol. 2018;71(25):2906–16.  https://doi.org/10.1016/j.jacc.2018.04.029. This study provides novel evidence directly implicating pressure overload as a culprit pathway for cTn release in AHF, even when the increase in hemodynamic pressures is transient. Described is a direct physiologic link between cTn release and one of the key hemodynamic derangements of the hypertensive and congestive AHF phenotypes, mediated by the stretch-related effects of increased end diastolic left ventricular pressures.
  18. 18.
    Hessel MH, Atsma DE, van der Valk EJ, Bax WH, Schalij MJ, van der Laarse A. Release of cardiac troponin I from viable cardiomyocytes is mediated by integrin stimulation. Pflugers Arch. 2008;455(6):979–86.  https://doi.org/10.1007/s00424-007-0354-8.CrossRefPubMedGoogle Scholar
  19. 19.
    Logeart D, Beyne P, Cusson C, Tokmakova M, Leban M, Guiti C, et al. Evidence of cardiac myolysis in severe nonischemic heart failure and the potential role of increased wall strain. Am Heart J. 2001;141(2):247–53.  https://doi.org/10.1067/mhj.2001.111767.
  20. 20.
    Shah RV, Chen-Tournoux AA, Picard MH, Januzzi JL. Association between troponin T and impaired left ventricular relaxation in patients with acute decompensated heart failure with preserved systolic function. Eur J Echocardiogr. 2009;10(6):765–8.  https://doi.org/10.1093/ejechocard/jep063.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Takashio S, Yamamuro M, Izumiya Y, Sugiyama S, Kojima S, Yamamoto E, et al. Coronary microvascular dysfunction and diastolic load correlate with cardiac troponin T release measured by a highly sensitive assay in patients with nonischemic heart failure. J Am Coll Cardiol. 2013;62(7):632–40.  https://doi.org/10.1016/j.jacc.2013.03.065.
  22. 22.
    Zelt JGE, Liu PP, Erthal F, deKemp RA, Wells G, O’Meara E, et al. N-terminal pro B-type natriuretic peptide and high-sensitivity cardiac troponin T levels are related to the extent of hibernating myocardium in patients with ischemic heart failure. Can J Cardiol. 2017;33(11):1478–88.  https://doi.org/10.1016/j.cjca.2017.06.012.CrossRefPubMedGoogle Scholar
  23. 23.
    Ryan MJ, Perera D. Identifying and managing hibernating myocardium: what’s new and what remains unknown? Curr Heart Fail Rep. 2018;15(4):214–23.  https://doi.org/10.1007/s11897-018-0396-6.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Perna ER, Macin SM, Cimbaro Canella JP, Alvarenga PM, Pantich RE, Rios NG, et al. High levels of troponin T are associated with ventricular remodeling and adverse in-hospital outcome in heart failure. Med Sci Monit. 2004;10(3):Cr90–5.PubMedGoogle Scholar
  25. 25.
    Piper HM, Schwartz P, Spahr R, Hutter JF, Spieckermann PG. Early enzyme release from myocardial cells is not due to irreversible cell damage. J Mol Cell Cardiol. 1984;16(4):385–8.CrossRefGoogle Scholar
  26. 26.
    Jaffe AS. Another unanswerable question. JACC Basic Transl Sci. 2017;2(2):115–7.  https://doi.org/10.1016/j.jacbts.2017.03.002.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Takemura G, Kanoh M, Minatoguchi S, Fujiwara H. Cardiomyocyte apoptosis in the failing heart--a critical review from definition and classification of cell death. Int J Cardiol. 2013;167(6):2373–86.  https://doi.org/10.1016/j.ijcard.2013.01.163.CrossRefPubMedGoogle Scholar
  28. 28.
    • Weil BR, Young RF, Shen X, Suzuki G, Qu J, Malhotra S, et al. Brief myocardial ischemia produces cardiac troponin I release and focal myocyte apoptosis in the absence of pathological infarction in swine. JACC Basic Transl Sci. 2017;2(2):105–14.  https://doi.org/10.1016/j.jacbts.2017.01.006. This study demonstrates that brief ischemic episodes causing cTn release, which can occur in AHF through a number of mechanisms, are often accompanied by apoptosis but not infarction. This gives key background to the idea of myocardial injury vs. myocardial ischemia described in reference 9, and is represented by the ischemic/apoptotic pathway described in figure 1 of the paper you are reading now. Such episodes are known to occur in the context of demand/perfusion mismatch from transient physiologic stress, myocardial stunning, and chronic repetitive insults to hibernating myocardium (all of which can be the inciting event of cTn release in AHF).
  29. 29.
    Newby LK, Jesse RL, Babb JD, Christenson RH, De Fer TM, Diamond GA, et al. ACCF 2012 expert consensus document on practical clinical considerations in the interpretation of troponin elevations: a report of the American College of Cardiology Foundation task force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2012;60(23):2427–63.  https://doi.org/10.1016/j.jacc.2012.08.969.CrossRefPubMedGoogle Scholar
  30. 30.
    Taqueti VR, Everett BM, Murthy VL, Gaber M, Foster CR, Hainer J, et al. Interaction of impaired coronary flow reserve and cardiomyocyte injury on adverse cardiovascular outcomes in patients without overt coronary artery disease. Circulation. 2015;131(6):528–35.  https://doi.org/10.1161/circulationaha.114.009716.
  31. 31.
    Braga JR, Tu JV, Austin PC, Chong A, You JJ, Farkouh ME, et al. Outcomes and care of patients with acute heart failure syndromes and cardiac troponin elevation. Circ Heart Fail. 2013;6(2):193–202.  https://doi.org/10.1161/circheartfailure.112.000075.
  32. 32.
    Drexler B, Heinisch C, Balmelli C, Lassus J, Siirila-Waris K, Arenja N, et al. Quantifying cardiac hemodynamic stress and cardiomyocyte damage in ischemic and nonischemic acute heart failure. Circ Heart Fail. 2012;5(1):17–24.  https://doi.org/10.1161/circheartfailure.111.961243.CrossRefPubMedGoogle Scholar
  33. 33.
    Flaherty JD, Bax JJ, De Luca L, Rossi JS, Davidson CJ, Filippatos G, et al. Acute heart failure syndromes in patients with coronary artery disease early assessment and treatment. J Am Coll Cardiol. 2009;53(3):254–63.  https://doi.org/10.1016/j.jacc.2008.08.072.CrossRefPubMedGoogle Scholar
  34. 34.
    Rossi JS, Flaherty JD, Fonarow GC, Nunez E, Gattis Stough W, Abraham WT, et al. Influence of coronary artery disease and coronary revascularization status on outcomes in patients with acute heart failure syndromes: a report from OPTIMIZE-HF (Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure). Eur J Heart Fail. 2008;10(12):1215–23.  https://doi.org/10.1016/j.ejheart.2008.09.009.
  35. 35.
    Steg PG, Dabbous OH, Feldman LJ, Cohen-Solal A, Aumont MC, Lopez-Sendon J, et al. Determinants and prognostic impact of heart failure complicating acute coronary syndromes: observations from the Global Registry of Acute Coronary Events (GRACE). Circulation. 2004;109(4):494–9.  https://doi.org/10.1161/01.Cir.0000109691.16944.Da.CrossRefPubMedGoogle Scholar
  36. 36.
    Tsuyuki RT, Shrive FM, Galbraith PD, Knudtson ML, Graham MM. Revascularization in patients with heart failure. CMAJ. 2006;175(4):361–5.  https://doi.org/10.1503/cmaj.060108.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Briceno N, Perera D. To revascularise or not to revascularise, that is the question: the diagnostic and management conundrum of ischaemic cardiomyopathy. Curr Cardiol Rep. 2016;18:54.  https://doi.org/10.1007/s11886-016-0726-9.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Peacock WF, De Marco T, Fonarow GC, Diercks D, Wynne J, Apple FS, et al. Cardiac troponin and outcome in acute heart failure. N Engl J Med. 2008;358(20):2117–26.  https://doi.org/10.1056/NEJMoa0706824.CrossRefPubMedGoogle Scholar
  39. 39.
    Latini R, Masson S, Anand IS, Missov E, Carlson M, Vago T, et al. Prognostic value of very low plasma concentrations of troponin T in patients with stable chronic heart failure. Circulation. 2007;116(11):1242–9.  https://doi.org/10.1161/circulationaha.106.655076.
  40. 40.
    La Vecchia L, Mezzena G, Zanolla L, Paccanaro M, Varotto L, Bonanno C, et al. Cardiac troponin I as diagnostic and prognostic marker in severe heart failure. J Heart Lung Transplant. 2000;19(7):644–52.CrossRefGoogle Scholar
  41. 41.
    Felker GM, Hasselblad V, Tang WH, Hernandez AF, Armstrong PW, Fonarow GC, et al. Troponin I in acute decompensated heart failure: insights from the ASCEND-HF study. Eur J Heart Fail. 2012;14(11):1257–64.  https://doi.org/10.1093/eurjhf/hfs110.CrossRefPubMedGoogle Scholar
  42. 42.
    Gheorghiade M, Gattis Stough W, Adams KF Jr, Jaffe AS, Hasselblad V, O’Connor CM. The pilot randomized study of nesiritide versus dobutamine in heart failure (PRESERVD-HF). Am J Cardiol. 2005;96(6a):18g–25g.  https://doi.org/10.1016/j.amjcard.2005.07.017.CrossRefPubMedGoogle Scholar
  43. 43.
    Jacob J, Roset A, Miro O, Alquezar A, Herrero P, Martin-Sanchez FJ, et al. EAHFE - TROPICA2 study. Prognostic value of troponin in patients with acute heart failure treated in Spanish hospital emergency departments. Biomarkers. 2017;22(3–4):337–44.  https://doi.org/10.1080/1354750x.2016.1265006.CrossRefPubMedGoogle Scholar
  44. 44.
    Kociol RD, Pang PS, Gheorghiade M, Fonarow GC, O’Connor CM, Felker GM. Troponin elevation in heart failure prevalence, mechanisms, and clinical implications. J Am Coll Cardiol. 2010;56(14):1071–8.  https://doi.org/10.1016/j.jacc.2010.06.016.CrossRefPubMedGoogle Scholar
  45. 45.
    • Yousufuddin M, Abdalrhim AD, Wang Z, Murad MH. Cardiac troponin in patients hospitalized with acute decompensated heart failure: a systematic review and meta-analysis. J Hosp Med. 2016;11(6):446–54.  https://doi.org/10.1002/jhm.2558. This is a metaanalysis of the numerous studies showing cTn is a poor prognostic factor in AHF, and is especially helpful in segregating the studies into separate analyses based on short, moderate, and long term outcomes.
  46. 46.
    You JJ, Austin PC, Alter DA, Ko DT, Tu JV. Relation between cardiac troponin I and mortality in acute decompensated heart failure. Am Heart J. 2007;153(4):462–70.  https://doi.org/10.1016/j.ahj.2007.01.027.CrossRefPubMedGoogle Scholar
  47. 47.
    Love SA, Sandoval Y, Smith SW, Nicholson J, Cao J, Ler R, et al. Incidence of undetectable, measurable, and increased cardiac troponin I concentrations above the 99th percentile using a high-sensitivity vs a contemporary assay in patients presenting to the emergency department. Clin Chem. 2016;62(8):1115–9.  https://doi.org/10.1373/clinchem.2016.256305.
  48. 48.
    Pascual-Figal DA, Casas T, Ordonez-Llanos J, Manzano-Fernandez S, Bonaque JC, Boronat M, et al. Highly sensitive troponin T for risk stratification of acutely destabilized heart failure. Am Heart J. 2012;163(6):1002–10.  https://doi.org/10.1016/j.ahj.2012.03.015.CrossRefPubMedGoogle Scholar
  49. 49.
    Vestergaard KR, Jespersen CB, Arnadottir A, Soletormos G, Schou M, Steffensen R, et al. Prevalence and significance of troponin elevations in patients without acute coronary disease. Int J Cardiol. 2016;222:819–25.  https://doi.org/10.1016/j.ijcard.2016.07.166.CrossRefPubMedGoogle Scholar
  50. 50.
    Perna ER, Macin SM, Cimbaro Canella JP, Alvarenga PM, Rios NG, Pantich R, et al. Minor myocardial damage detected by troponin T is a powerful predictor of long-term prognosis in patients with acute decompensated heart failure. Int J Cardiol. 2005;99(2):253–61.  https://doi.org/10.1016/j.ijcard.2004.01.017.CrossRefPubMedGoogle Scholar
  51. 51.
    Demir M, Kanadasi M, Akpinar O, Donmez Y, Avkarogullari M, Alhan C, et al. Cardiac troponin T as a prognostic marker in patients with heart failure: a 3-year outcome study. Angiology. 2007;58(5):603–9.  https://doi.org/10.1177/0003319707307344.CrossRefPubMedGoogle Scholar
  52. 52.
    Metra M, Nodari S, Parrinello G, Specchia C, Brentana L, Rocca P, et al. The role of plasma biomarkers in acute heart failure. Serial changes and independent prognostic value of NT-proBNP and cardiac troponin-T. Eur J Heart Fail. 2007;9(8):776–86.  https://doi.org/10.1016/j.ejheart.2007.05.007.
  53. 53.
    Parenti N, Bartolacci S, Carle F, Angelo F. Cardiac troponin I as prognostic marker in heart failure patients discharged from emergency department. Intern Emerg Med. 2008;3(1):43–7.  https://doi.org/10.1007/s11739-008-0092-8.CrossRefPubMedGoogle Scholar
  54. 54.
    Del Carlo CH, Pereira-Barretto AC, Cassaro-Strunz CM, Latorre Mdo R, Oliveira Junior MT, Ramires JA. Cardiac troponin T for risk stratification in decompensated chronic heart failure. Arq Bras Cardiol. 2009;92(5):372-80 89-97, 404-12.Google Scholar
  55. 55.
    O'Connor CM, Fiuzat M, Lombardi C, Fujita K, Jia G, Davison BA, et al. Impact of serial troponin release on outcomes in patients with acute heart failure: analysis from the PROTECT pilot study. Circ Heart Fail. 2011;4(6):724–32.  https://doi.org/10.1161/circheartfailure.111.961581.
  56. 56.
    Parissis JT, Ikonomidis I, Rafouli-Stergiou P, Mebazaa A, Delgado J, Farmakis D, et al. Clinical characteristics and predictors of in-hospital mortality in acute heart failure with preserved left ventricular ejection fraction. Am J Cardiol. 2011;107(1):79–84.  https://doi.org/10.1016/j.amjcard.2010.08.044.
  57. 57.
    Perna ER, Aspromonte N, Cimbaro Canella JP, Di Tano G, Macin SM, Feola M, et al. Minor myocardial damage is a prevalent condition in patients with acute heart failure syndromes and preserved systolic function with long-term prognostic implications: a report from the CIAST-HF (Collaborative Italo-Argentinean Study on cardiac Troponin T in Heart Failure) study. J Card Fail. 2012;18(11):822–30.  https://doi.org/10.1016/j.cardfail.2012.10.008.CrossRefPubMedGoogle Scholar
  58. 58.
    Pandey A, Golwala H, Sheng S, DeVore AD, Hernandez AF, Bhatt DL, et al. Factors associated with and prognostic implications of cardiac troponin elevation in decompensated heart failure with preserved ejection fraction: findings from the American Heart Association Get With The Guidelines-Heart Failure program. JAMA Cardiol. 2017;2(2):136–45.  https://doi.org/10.1001/jamacardio.2016.4726.CrossRefPubMedGoogle Scholar
  59. 59.
    Thawabi M, Hawatmeh A, Studyvin S, Habib H, Shamoon F, Cohen M. Cardiac troponin and outcome in decompensated heart failure with preserved ejection fraction. Cardiovasc Diagn Ther. 2017;7(4):359–66.  https://doi.org/10.21037/cdt.2017.03.17.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Arenja N, Reichlin T, Drexler B, Oshima S, Denhaerynck K, Haaf P, et al. Sensitive cardiac troponin in the diagnosis and risk stratification of acute heart failure. J Intern Med. 2012;271(6):598–607.  https://doi.org/10.1111/j.1365-2796.2011.02469.x.
  61. 61.
    Ather S, Hira RS, Shenoy M, Fatemi O, Deswal A, Aguilar D, et al. Recurrent low-level troponin I elevation is a worse prognostic indicator than occasional injury pattern in patients hospitalized with heart failure. Int J Cardiol. 2013;166(2):394–8.  https://doi.org/10.1016/j.ijcard.2011.10.113.
  62. 62.
    Chioncel O, Collins SP, Greene SJ, Pang PS, Ambrosy AP, Antohi EL, et al. Predictors of post-discharge mortality among patients hospitalized for acute heart failure. Card Fail Rev. 2017;3(2):122–9.  https://doi.org/10.15420/cfr.2017:12:1.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    de Antonio M, Lupon J, Galan A, Vila J, Urrutia A, Bayes-Genis A. Combined use of high-sensitivity cardiac troponin T and N-terminal pro-B type natriuretic peptide improves measurements of performance over established mortality risk factors in chronic heart failure. Am Heart J. 2012;163(5):821–8.  https://doi.org/10.1016/j.ahj.2012.03.004.CrossRefPubMedGoogle Scholar
  64. 64.
    Del Carlo CH, Pereira-Barretto AC, Cassaro-Strunz C, Latorre Mdo R, Ramires JA. Serial measure of cardiac troponin T levels for prediction of clinical events in decompensated heart failure. J Card Fail. 2004;10(1):43–8.CrossRefGoogle Scholar
  65. 65.
    Felker GM, Mentz RJ, Teerlink JR, Voors AA, Pang PS, Ponikowski P, et al. Serial high sensitivity cardiac troponin T measurement in acute heart failure: insights from the RELAX-AHF study. Eur J Heart Fail. 2015;17(12):1262–70.  https://doi.org/10.1002/ejhf.341.
  66. 66.
    Ferreira JP, Santos M, Almeida S, Marques I, Bettencourt P, Carvalho H. High-sensitivity troponin T: a biomarker for diuretic response in decompensated heart failure patients. Cardiol Res Pract. 2014;2014:269604–9.  https://doi.org/10.1155/2014/269604.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Fonarow GC, Peacock WF, Horwich TB, Phillips CO, Givertz MM, Lopatin M, et al. Usefulness of B-type natriuretic peptide and cardiac troponin levels to predict in-hospital mortality from ADHERE. Am J Cardiol. 2008;101(2):231–7.  https://doi.org/10.1016/j.amjcard.2007.07.066.
  68. 68.
    Koide K, Yoshikawa T, Nagatomo Y, Kohsaka S, Anzai T, Meguro T, et al. Elevated troponin T on discharge predicts poor outcome of decompensated heart failure. Heart Vessel. 2010;25(3):217–22.  https://doi.org/10.1007/s00380-009-1194-6.
  69. 69.
    Pang PS, Teerlink JR, Voors AA, Ponikowski P, Greenberg BH, Filippatos G, et al. Use of high-sensitivity troponin T to identify patients with acute heart failure at lower risk for adverse outcomes: an exploratory analysis from the RELAX-AHF trial. JACC Heart Fail. 2016;4(7):591–9.  https://doi.org/10.1016/j.jchf.2016.02.009.
  70. 70.
    Parissis JT, Papadakis J, Kadoglou NP, Varounis C, Psarogiannakopoulos P, Rafouli-Stergiou P, et al. Prognostic value of high sensitivity troponin T in patients with acutely decompensated heart failure and non-detectable conventional troponin T levels. Int J Cardiol. 2013;168(4):3609–12.  https://doi.org/10.1016/j.ijcard.2013.05.056.CrossRefPubMedGoogle Scholar
  71. 71.
    Pascual-Figal DA, Manzano-Fernandez S, Boronat M, Casas T, Garrido IP, Bonaque JC, et al. Soluble ST2, high-sensitivity troponin T- and N-terminal pro-B-type natriuretic peptide: complementary role for risk stratification in acutely decompensated heart failure. Eur J Heart Fail. 2011;13(7):718–25.  https://doi.org/10.1093/eurjhf/hfr047.CrossRefPubMedGoogle Scholar
  72. 72.
    Stelzle D, Shah ASV, Anand A, Strachan FE, Chapman AR, Denvir MA, et al. High-sensitivity cardiac troponin I and risk of heart failure in patients with suspected acute coronary syndrome: a cohort study. Eur Heart J Qual Care Clin Outcomes. 2018;4(1):36–42.  https://doi.org/10.1093/ehjqcco/qcx022.
  73. 73.
    Takashio S, Nagai T, Sugano Y, Honda S, Okada A, Asaumi Y, et al. Persistent increase in cardiac troponin T at hospital discharge predicts repeat hospitalization in patients with acute decompensated heart failure. PLoS One. 2017;12(4):e0173336.  https://doi.org/10.1371/journal.pone.0173336.
  74. 74.
    Taniguchi R, Sato Y, Yamada T, Ooba M, Higuchi H, Matsumori A, et al. Combined measurements of cardiac troponin T and N-terminal pro-brain natriuretic peptide in patients with heart failure. Circ J. 2004;68(12):1160–4.Google Scholar
  75. 75.
    Wallenborn J, Marx A, Stork S, Guder G, Brenner S, Ertl G, et al. Prognostic significance of serial high-sensitivity troponin I measurements following acute cardiac decompensation-correlation with longer-term clinical outcomes and reverse remodelling. Int J Cardiol. 2017;232:199–207.  https://doi.org/10.1016/j.ijcard.2017.01.021.CrossRefPubMedGoogle Scholar
  76. 76.
    Xue Y, Clopton P, Peacock WF, Maisel AS. Serial changes in high-sensitive troponin I predict outcome in patients with decompensated heart failure. Eur J Heart Fail. 2011;13(1):37–42.  https://doi.org/10.1093/eurjhf/hfq210.CrossRefPubMedGoogle Scholar
  77. 77.
    Nagarajan V, Hernandez AV, Tang WH. Prognostic value of cardiac troponin in chronic stable heart failure: a systematic review. Heart. 2012;98(24):1778–86.  https://doi.org/10.1136/heartjnl-2012-301779.CrossRefPubMedGoogle Scholar
  78. 78.
    Tsutamoto T, Kawahara C, Nishiyama K, Yamaji M, Fujii M, Yamamoto T, et al. Prognostic role of highly sensitive cardiac troponin I in patients with systolic heart failure. Am Heart J. 2010;159(1):63–7.  https://doi.org/10.1016/j.ahj.2009.10.022.
  79. 79.
    Hunter BR, Collins SP, Fermann GJ, Levy PD, Shen C, Ayaz SI, et al. Design and rationale of the high-sensitivity troponin T rules out acute cardiac insufficiency trial. Pragmat Obs Res. 2017;8:85–90.  https://doi.org/10.2147/por.S130807.
  80. 80.
    Perna ER, Macin SM, Cimbaro Canella JP, Szyszko A, Franciosi V, Vargas Morales W, et al. Importance of early combined N-terminal pro-brain natriuretic peptide and cardiac troponin T measurements for long-term risk stratification of patients with decompensated heart failure. J Heart Lung Transplant. 2006;25(10):1230–40.  https://doi.org/10.1016/j.healun.2006.08.004.
  81. 81.
    Fish-Trotter H, Collins SP, Danagoulian S, Hunter B, Li X, Levy PD, et al. Design and rationale of a randomized trial: using short stay units instead of routine admission to improve patient centered health outcomes for acute heart failure patients (SSU-AHF). Contemp Clin Trials. 2018;72:137–45.  https://doi.org/10.1016/j.cct.2018.08.003.
  82. 82.
    Zsilinszka R, Mentz RJ, DeVore AD, Eapen ZJ, Pang PS, Hernandez AF. Acute heart failure: alternatives to hospitalization. JACC Heart Fail. 2017;5(5):329–36.  https://doi.org/10.1016/j.jchf.2016.12.014.CrossRefPubMedGoogle Scholar
  83. 83.
    Favot M, Gowland L, Ehrman R, Gallien J, Khait L, Afonso L, et al. Point-of-care strain echocardiography in acute heart failure. Am J Emerg Med. 2016;34(11):2234–6.  https://doi.org/10.1016/j.ajem.2016.08.019.
  84. 84.
    Garcia-Osuna A, Gaze D, Grau-Agramunt M, Morris T, Telha C, Bartolome A, et al. Ultrasensitive quantification of cardiac troponin I by a Single Molecule Counting method: analytical validation and biological features. Clin Chim Acta. 2018;486:224–31.  https://doi.org/10.1016/j.cca.2018.08.015.CrossRefPubMedGoogle Scholar
  85. 85.
    Arnadottir A, Vestergaard KR, Pallisgaard J, Soletormos G, Steffensen R, Goetze JP, et al. High-sensitivity cardiac troponin T is superior to troponin I in the prediction of mortality in patients without acute coronary syndrome. Int J Cardiol. 2018;259:186–91.  https://doi.org/10.1016/j.ijcard.2018.01.131.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Emergency MedicineBeaumont HealthRoyal OakUSA
  2. 2.Department of Emergency MedicineWayne State University School of MedicineDetroitUSA

Personalised recommendations