Advertisement

Pulmonary Hypertension in Advanced Heart Failure: Assessment and Management of the Failing RV and LV

  • Sriram D. Rao
  • Jonathan N. Menachem
  • Edo Y. Birati
  • Jeremy A. MazurekEmail author
Updates in Advanced Heart Failure (E. Rame and M. St. John Sutton, Section Editors)
  • 5 Downloads
Part of the following topical collections:
  1. Topical Collection on Updates in Advanced Heart Failure

Abstract

Purpose of Review

In patients with heart failure with reduced ejection fraction, the presence of pulmonary hypertension (PH-LHD) has a significant impact on their prognosis. The purpose of this review is to explain the methods of diagnosing PH-LHD and then discuss the available therapeutic options.

Recent Findings

We begin by examining the methods of assessment of PH-LHD—echocardiography, cardiopulmonary exercise testing, and right heart catheterization—with a particular focus on the importance of accurate measurement to ensure the proper determination of PH-LHD. We then focus primarily on management of PH-LHD, with an examination of trials of therapeutic options, use of mechanical circulatory support, and transplantation.

Summary

This review highlights the complexities in diagnosis and management of PH-LHD. We outline a number of useful ways to maximize the yield of diagnostic testing, as well as give suggestions on the use of medical therapies, the role of both temporary mechanical support and left ventricular assist device, and finally the ways to best bridge these patients to transplantation.

Keywords

Pulmonary hypertension Heart failure Post capillary Ventricular dysfunction, left Ventricular dysfunction, right 

Notes

Compliance with Ethical Standards

Conflict of Interest

Sriram D. Rao and Jonathan N. Menachem declare no conflict of interest. Dr. Birati reports personal fees from Luitpold Pharmaceuticals, Inc. Dr. Mazurek reports personal fees from Actelion Pharmaceuticals.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Guazzi M, Borlaug BA. Pulmonary hypertension due to left heart disease. Circulation. 2012;126(8):975–90.  https://doi.org/10.1161/CIRCULATIONAHA.111.085761.Google Scholar
  2. 2.
    •• Galiè N, Humbert M, Vachiery J-L, Gibbs S, Lang I, Torbicki A, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: the Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37(1):67–119.  https://doi.org/10.1093/eurheartj/ehv317. An excellent summary of pulmonary hypertension with recent guideline recommendations.
  3. 3.
    Simonneau G, Montani D, Celermajer DS, Denton CP, Gatzoulis MA, Krowka M, Williams PG, Souza R. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J 2019;53.Google Scholar
  4. 4.
    Rosenkranz S, Gibbs JSR, Wachter R, De Marco T, Vonk-Noordegraaf A, Vachiéry J-L. Left ventricular heart failure and pulmonary hypertension. Eur Heart J. 2016;37(12):942–54.  https://doi.org/10.1093/eurheartj/ehv512.Google Scholar
  5. 5.
    Ghio S, Gavazzi A, Campana C, Inserra C, Klersy C, Sebastiani R, et al. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol. 2001;37(1):183–8.  https://doi.org/10.1016/S0735-1097(00)01102-5.Google Scholar
  6. 6.
    Miller WL, Grill DE, Borlaug BA. Clinical features, hemodynamics, and outcomes of pulmonary hypertension due to chronic heart failure with reduced ejection fraction: Pulmonary Hypertension and Heart Failure. JACC Heart Fail. 2013;1(4):290–9.  https://doi.org/10.1016/j.jchf.2013.05.001.Google Scholar
  7. 7.
    Tampakakis E, Leary PJ, Selby VN, de Marco T, Cappola TP, Felker GM, et al. The diastolic pulmonary gradient does not predict survival in patients with pulmonary hypertension due to left heart disease. JACC Heart Fail. 2015;3(1):9–16.  https://doi.org/10.1016/j.jchf.2014.07.010.Google Scholar
  8. 8.
    Miller WL, Mahoney DW, Enriquez-Sarano M. Quantitative Doppler-echocardiographic imaging and clinical outcomes with left ventricular systolic dysfunction. Circ Cardiovasc Imaging. 2014;7(2):330–6.  https://doi.org/10.1161/CIRCIMAGING.113.001184.Google Scholar
  9. 9.
    Salamon JN, Kelesidis I, Msaouel P, Mazurek JA, Mannem S, Adzic A, et al. Outcomes in World Health Organization group II pulmonary hypertension: mortality and readmission trends with systolic and preserved ejection fraction–induced pulmonary hypertension. J Card Fail. 2014;20(7):467–75.  https://doi.org/10.1016/j.cardfail.2014.05.003.Google Scholar
  10. 10.
    Adusumalli S, Mazurek JA. Pulmonary hypertension due to left ventricular cardiomyopathy: is it the result or cause of disease progression? Curr Heart Fail Rep. 2017;14(6):507–13.  https://doi.org/10.1007/s11897-017-0368-2.Google Scholar
  11. 11.
    Sparrow CT, LaRue SJ, Schilling JD. Intersection of pulmonary hypertension and right ventricular dysfunction in patients on left ventricular assist device support: is there a role for pulmonary vasodilators? Circ Heart Fail. 2018;11(1):e004255.  https://doi.org/10.1161/CIRCHEARTFAILURE.117.004255.Google Scholar
  12. 12.
    Opotowsky AR, Clair M, Afilalo J, Landzberg MJ, Waxman AB, Moko L, et al. A simple echocardiographic method to estimate pulmonary vascular resistance. Am J Cardiol. 2013;112(6):873–82.  https://doi.org/10.1016/j.amjcard.2013.05.016.Google Scholar
  13. 13.
    Forfia PR, Vachiéry J-L. Echocardiography in pulmonary arterial hypertension. Am J Cardiol. 2012;110(6, Supplement):S16–24.  https://doi.org/10.1016/j.amjcard.2012.06.012.Google Scholar
  14. 14.
    Mazurek JA, Forfia PR. Enhancing the accuracy of echocardiography in the diagnosis of pulmonary arterial hypertension: looking at the heart to learn about the lungs. Curr Opin Pulm Med. 2013;19(5):437–45.  https://doi.org/10.1097/MCP.0b013e3283645966.Google Scholar
  15. 15.
    Brennan JM, Blair JE, Goonewardena S, Ronan A, Shah D, Vasaiwala S, et al. Reappraisal of the use of inferior vena cava for estimating right atrial pressure. J Am Soc Echocardiogr. 2007;20(7):857–61.  https://doi.org/10.1016/j.echo.2007.01.005.Google Scholar
  16. 16.
    Beigel R, Cercek B, Luo H, Siegel RJ. Noninvasive evaluation of right atrial pressure. J Am Soc Echocardiogr. 2013;26(9):1033–42.  https://doi.org/10.1016/j.echo.2013.06.004.Google Scholar
  17. 17.
    Do DH, Therrien J, Marelli A, Martucci G, Afilalo J, Sebag IA. Right atrial size relates to right ventricular end-diastolic pressure in an adult population with congenital heart disease. Echocardiography. 2011;28(1):109–16.  https://doi.org/10.1111/j.1540-8175.2010.01277.x.
  18. 18.
    Sundereswaran L, Nagueh SF, Vardan S, Middleton KJ, Zoghbi WA, Quiñones MA, et al. Estimation of left and right ventricular filling pressures after heart transplantation by tissue Doppler imaging. Am J Cardiol. 1998;82(3):352–7.Google Scholar
  19. 19.
    Sade LE, Gulmez O, Eroglu S, Sezgin A, Muderrisoglu H. Noninvasive estimation of right ventricular filling pressure by ratio of early tricuspid inflow to annular diastolic velocity in patients with and without recent cardiac surgery. J Am Soc Echocardiogr. 2007;20(8):982–8.  https://doi.org/10.1016/j.echo.2007.01.012.Google Scholar
  20. 20.
    Amsallem M, Sternbach JM, Adigopula S, Kobayashi Y, Vu TA, Zamanian R, et al. Addressing the controversy of estimating pulmonary arterial pressure by echocardiography. J Am Soc Echocardiogr. 2016;29(2):93–102.  https://doi.org/10.1016/j.echo.2015.11.001.Google Scholar
  21. 21.
    Arkles JS, Opotowsky AR, Ojeda J, Rogers F, Liu T, Prassana V, et al. Shape of the right ventricular Doppler envelope predicts hemodynamics and right heart function in pulmonary hypertension. Am J Respir Crit Care Med. 2011;183(2):268–76.  https://doi.org/10.1164/rccm.201004-0601OC.
  22. 22.
    Takahama H, McCully RB, Frantz RP, Kane GC. Unraveling the RV ejection Doppler envelope: insight into pulmonary artery hemodynamics and disease severity. JACC Cardiovasc Imaging. 2017;10(10, Part B):1268–77.  https://doi.org/10.1016/j.jcmg.2016.12.021.Google Scholar
  23. 23.
    Guazzi M, Naeije R, Arena R, Corrà U, Ghio S, Forfia P, et al. Echocardiography of right ventriculoarterial coupling combined with cardiopulmonary exercise testing to predict outcome in heart failure. Chest. 2015;148(1):226–34.  https://doi.org/10.1378/chest.14-2065.Google Scholar
  24. 24.
    Guazzi M, Bandera F, Pelissero G, Castelvecchio S, Menicanti L, Ghio S, et al. Tricuspid annular plane systolic excursion and pulmonary arterial systolic pressure relationship in heart failure: an index of right ventricular contractile function and prognosis. Am J Physiol Heart Circ Physiol. 2013;305(9):H1373–81.  https://doi.org/10.1152/ajpheart.00157.2013.Google Scholar
  25. 25.
    Bhattacharya PT, Troutman GS, Mao F, Fox AL, Tanna MS, Zamani P, Grandin EW, Menachem JN, Birati EY, Chirinos JA, Mazimba S, Smith KA, Kawut SM, Forfia PR, Vaidya A, Mazurek JA. Right ventricular outflow tract velocity time integral-to-pulmonary artery systolic pressure ratio: a non-invasive metric of pulmonary arterial compliance differs across the spectrum of pulmonary hypertension. Pulm Circ. 2019 Apr-Jun;9(2):2045894019841978.Google Scholar
  26. 26.
    Guazzi M, Adams V, Conraads V, Halle M, Mezzani A, Vanhees L, et al. EACPR/AHA Scientific Statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation. 2012;126(18):2261–74.  https://doi.org/10.1161/CIR.0b013e31826fb946.Google Scholar
  27. 27.
    Gibbons RJ, Balady GJ, Bricker JT, Chaitman BR, Fletcher GF, Froelicher VF, et al. ACC/AHA 2002 guideline update for exercise testing: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). Circulation. 2002;106(14):1883–92.Google Scholar
  28. 28.
    Butler J, Chomsky DB, Wilson JR. Pulmonary hypertension and exercise intolerance in patients with heart failure. J Am Coll Cardiol. 1999;34(6):1802–6.  https://doi.org/10.1016/S0735-1097(99)00408-8.Google Scholar
  29. 29.
    Arena R, Lavie CJ, Milani RV, Myers J, Guazzi M. Cardiopulmonary exercise testing in patients with pulmonary arterial hypertension: an evidence-based review. J Heart Lung Transplant. 2010;29(2):159–73.  https://doi.org/10.1016/j.healun.2009.09.003.Google Scholar
  30. 30.
    Methvin AB, Owens AT, Emmi AG, Allen M, Wiegers SE, Dries DL, et al. Ventilatory inefficiency reflects right ventricular dysfunction in systolic heart failure. Chest. 2011;139(3):617–25.  https://doi.org/10.1378/chest.10-0318.Google Scholar
  31. 31.
    Kovacs G, Avian A, Pienn M, Naeije R, Olschewski H. Reading pulmonary vascular pressure tracings. How to handle the problems of zero leveling and respiratory swings. Am J Respir Crit Care Med. 2014;190(3):252–7.  https://doi.org/10.1164/rccm.201402-0269PP.Google Scholar
  32. 32.
    Hoeper MM, Bogaard HJ, Condliffe R, Frantz R, Khanna D, Kurzyna M, et al. Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D42–50.  https://doi.org/10.1016/j.jacc.2013.10.032.Google Scholar
  33. 33.
    Robbins IM, Hemnes AR, Pugh ME, Brittain EL, Zhao DX, Piana RN, et al. High prevalence of occult pulmonary venous hypertension revealed by fluid challenge in pulmonary hypertension. Circ Heart Fail. 2014;7(1):116–22.  https://doi.org/10.1161/CIRCHEARTFAILURE.113.000468.Google Scholar
  34. 34.
    Maron BA, Cockrill BA, Waxman AB, Systrom DM. The invasive cardiopulmonary exercise test. Circulation. 2013;127(10):1157–64.  https://doi.org/10.1161/CIRCULATIONAHA.112.104463.Google Scholar
  35. 35.
    Costard-Jäckle A, Fowler MB. Influence of preoperative pulmonary artery pressure on mortality after heart transplantation: testing of potential reversibility of pulmonary hypertension with nitroprusside is useful in defining a high risk group. J Am Coll Cardiol. 1992;19(1):48–54.  https://doi.org/10.1016/0735-1097(92)90050-W.Google Scholar
  36. 36.
    Ichinose F, Roberts JD, Zapol WM. Inhaled nitric oxide: a selective pulmonary vasodilator: current uses and therapeutic potential. Circulation. 2004;109(25):3106–11.  https://doi.org/10.1161/01.CIR.0000134595.80170.62.Google Scholar
  37. 37.
    Givertz MM, Hare JM, Loh E, Gauthier DF, Colucci WS. Effect of bolus milrinone on hemodynamic variables and pulmonary vascular resistance in patients with severe left ventricular dysfunction: a rapid test for reversibility of pulmonary hypertension. J Am Coll Cardiol. 1996;28(7):1775–80.  https://doi.org/10.1016/S0735-1097(96)00399-3.Google Scholar
  38. 38.
    Murali S, Uretsky BF, Armitage JM, et al. Utility of prostaglandin E1 in the pretransplantation evaluation of heart failure patients with significant pulmonary hypertension. J Heart Lung Transplant. 1992;11(4 Pt 1):716–23.Google Scholar
  39. 39.
    Abraham WT, Adamson PB, Bourge RC, Aaron MF, Costanzo MR, Stevenson LW, et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet. 2011;377(9766):658–66.  https://doi.org/10.1016/S0140-6736(11)60101-3.Google Scholar
  40. 40.
    Hemodynamic-GUIDEd Management of Heart Failure—full-text view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03387813. Accessed 29 Nov 2018.
  41. 41.
    Botha P, Parry G, Dark JH, MacGowan GA. Acute hemodynamic effects of intravenous sildenafil citrate in congestive heart failure: comparison of phosphodiesterase type-3 and -5 inhibition. J Heart Lung Transplant. 2009;28(7):676–82.  https://doi.org/10.1016/j.healun.2009.04.013.Google Scholar
  42. 42.
    Farber HW, Loscalzo J. Pulmonary arterial hypertension. N Engl J Med. 2004;351(16):1655–65.  https://doi.org/10.1056/NEJMra035488.Google Scholar
  43. 43.
    Califf RM, Adams KF, McKenna WJ, et al. A randomized controlled trial of epoprostenol therapy for severe congestive heart failure: the Flolan International Randomized Survival Trial (FIRST). Am Heart J. 1997;134(1):44–54.Google Scholar
  44. 44.
    Anand I, McMurray J, Cohn JN, Konstam MA, Notter T, Quitzau K, et al. Long-term effects of darusentan on left-ventricular remodelling and clinical outcomes in the EndothelinA Receptor Antagonist Trial in Heart Failure (EARTH): randomised, double-blind, placebo-controlled trial. Lancet. 2004;364(9431):347–54.  https://doi.org/10.1016/S0140-6736(04)16723-8.Google Scholar
  45. 45.
    Bursi F, McNallan SM, Redfield MM, et al. Pulmonary pressures and death in heart failure: a community study. J Am Coll Cardiol. 2012;59(3):222–31.  https://doi.org/10.1016/j.jacc.2011.06.076.Google Scholar
  46. 46.
    Lewis GD, Lachmann J, Camuso J, Lepore JJ, Shin J, Martinovic ME, et al. Sildenafil improves exercise hemodynamics and oxygen uptake in patients with systolic heart failure. Circulation. 2007;115(1):59–66.  https://doi.org/10.1161/CIRCULATIONAHA.106.626226.Google Scholar
  47. 47.
    Phosphodiesterase type 5 inhibition with tadalafil changes outcomes in heart failure—full-text view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT01910389. Accessed 29 Nov 2018.
  48. 48.
    Guazzi M, Samaja M, Arena R, Vicenzi M, Guazzi MD. Long-term use of sildenafil in the therapeutic management of heart failure. J Am Coll Cardiol. 2007;50(22):2136–44.  https://doi.org/10.1016/j.jacc.2007.07.078.Google Scholar
  49. 49.
    Guazzi M, Vicenzi M, Arena R, Guazzi MD. PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure: results of a 1-year, prospective, randomized, placebo-controlled study. Circ Heart Fail. 2011;4(1):8–17.  https://doi.org/10.1161/CIRCHEARTFAILURE.110.944694.Google Scholar
  50. 50.
    Lüscher TF, Enseleit F, Pacher R, et al. Hemodynamic and neurohumoral effects of selective endothelin A (ET(A)) receptor blockade in chronic heart failure: the Heart Failure ET(A) Receptor Blockade Trial (HEAT). Circulation. 2002;106(21):2666–72.Google Scholar
  51. 51.
    Sildenafil versus placebo in chronic heart failure—full-text view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT01616381. Accessed 29 Nov 2018.
  52. 52.
    Packer M, McMurray JJV, Krum H, et al. Long-term effect of endothelin receptor antagonism with bosentan on the morbidity and mortality of patients with severe chronic heart failure: Primary Results of the ENABLE Trials. JACC Heart Fail. 2017;5(5):317–26.  https://doi.org/10.1016/j.jchf.2017.02.021.Google Scholar
  53. 53.
    Packer M, McMurray J, Massie BM, Caspi A, Charlon V, Cohen-Solal A, et al. Clinical effects of endothelin receptor antagonism with bosentan in patients with severe chronic heart failure: results of a pilot study. J Card Fail. 2005;11(1):12–20.Google Scholar
  54. 54.
    Bonderman D, Ghio S, Felix Stephan B, et al. Riociguat for patients with pulmonary hypertension caused by systolic left ventricular dysfunction. Circulation. 2013;128(5):502–11.  https://doi.org/10.1161/CIRCULATIONAHA.113.001458.Google Scholar
  55. 55.
    Vachiéry J-L, Delcroix M, Al-Hiti H, et al. Macitentan in pulmonary hypertension due to left ventricular dysfunction. Eur Respir J. 2018;51(2):1701886.  https://doi.org/10.1183/13993003.01886-2017.Google Scholar
  56. 56.
    • Kapur Navin K, Esposito Michele L, Yousef B, et al. Mechanical circulatory support devices for acute right ventricular failure. Circulation. 2017;136(3):314–26.  https://doi.org/10.1161/CIRCULATIONAHA.116.025290. A concise and recently published in-depth review on mechanical support options for right ventricular failure in general.
  57. 57.
    Ro SK, Kim JB, Jung SH, Choo SJ, Chung CH, Lee JW. Extracorporeal life support for cardiogenic shock: influence of concomitant intra-aortic balloon counterpulsation. Eur J Cardiothorac Surg. 2014;46(2):186–92; discussion 192.  https://doi.org/10.1093/ejcts/ezu005.Google Scholar
  58. 58.
    Koeckert MS, Jorde UP, Naka Y, Moses JW, Takayama H. Impella LP 2.5 for left ventricular unloading during venoarterial extracorporeal membrane oxygenation support. J Card Surg. 2011;26(6):666–8.  https://doi.org/10.1111/j.1540-8191.2011.01338.x.Google Scholar
  59. 59.
    Kang M-H, Hahn J-Y, Gwon H-C, Song YB, Choi JO, Choi JH, et al. Percutaneous transseptal left atrial drainage for decompression of the left heart in an adult patient during percutaneous cardiopulmonary support. Korean Circ J. 2011;41(7):402–4.  https://doi.org/10.4070/kcj.2011.41.7.402.Google Scholar
  60. 60.
    Fumagalli R, Bombino M, Borelli M, Rossi F, Colombo V, Osculati G, et al. Percutaneous bridge to heart transplantation by venoarterial ECMO and transaortic left ventricular venting. Int J Artif Organs. 2004;27(5):410–3.Google Scholar
  61. 61.
    Miller LW, Rogers JG. Evolution of left ventricular assist device therapy for advanced heart failure: a review. JAMA Cardiol. 2018;3(7):650–8.  https://doi.org/10.1001/jamacardio.2018.0522.Google Scholar
  62. 62.
    Selby VN, Teuteberg JJ, Allen IE, Tedford RJ, Kormos RL, Marco TD. Characterization and impact of pulmonary hypertension on outcomes after left ventricular assist device implantation. J Heart Lung Transplant. 2015;34(4):S142.  https://doi.org/10.1016/j.healun.2015.01.384.Google Scholar
  63. 63.
    Houston BA, Kalathiya RJ, Hsu S, Loungani R, Davis ME, Coffin ST, et al. Right ventricular afterload sensitivity dramatically increases after left ventricular assist device implantation: a multi-center hemodynamic analysis. J Heart Lung Transplant. 2016;35(7):868–76.  https://doi.org/10.1016/j.healun.2016.01.1225.Google Scholar
  64. 64.
    Grandin EW, Zamani P, Mazurek JA, Troutman GS, Birati EY, Vorovich E, et al. Right ventricular response to pulsatile load is associated with early right heart failure and mortality after left ventricular assist device. J Heart Lung Transplant. 2017;36(1):97–105.  https://doi.org/10.1016/j.healun.2016.06.015.Google Scholar
  65. 65.
    Kalogeropoulos AP, Kelkar A, Weinberger JF, Morris AA, Georgiopoulou VV, Markham DW, et al. Validation of clinical scores for right ventricular failure prediction after implantation of continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2015;34(12):1595–603.  https://doi.org/10.1016/j.healun.2015.05.005.Google Scholar
  66. 66.
    Torre-Amione G, Southard RE, Loebe MM, Youker KA, Bruckner B, Estep JD, et al. Reversal of secondary pulmonary hypertension by axial and pulsatile mechanical circulatory support. J Heart Lung Transplant. 2010;29(2):195–200.  https://doi.org/10.1016/j.healun.2009.05.030.Google Scholar
  67. 67.
    Mikus E, Stepanenko A, Krabatsch T, Loforte A, Dandel M, Lehmkuhl HB, et al. Reversibility of fixed pulmonary hypertension in left ventricular assist device support recipients. Eur J Cardiothorac Surg. 2011;40(4):971–7.  https://doi.org/10.1016/j.ejcts.2011.01.019.Google Scholar
  68. 68.
    Beyersdorf F, Schlensak C, Berchtold-Herz M, Trummer G. Regression of “fixed” pulmonary vascular resistance in heart transplant candidates after unloading with ventricular assist devices. J Thorac Cardiovasc Surg. 2010;140(4):747–9.  https://doi.org/10.1016/j.jtcvs.2010.05.042.Google Scholar
  69. 69.
    Kumarasinghe G, Jain P, Jabbour A, Lai J, Keogh AM, Kotlyar E, et al. Comparison of continuous-flow ventricular assist device therapy with intensive medical therapy in fixed pulmonary hypertension secondary to advanced left heart failure. ESC Heart Fail. 2018;5(4):695–702.  https://doi.org/10.1002/ehf2.12284.Google Scholar
  70. 70.
    Tsukashita M, Takayama H, Takeda K, Han J, Colombo PC, Yuzefpolskaya M, et al. Effect of pulmonary vascular resistance before left ventricular assist device implantation on short- and long-term post-transplant survival. J Thorac Cardiovasc Surg. 2015;150(5):1352–60, 1361.e1-2.  https://doi.org/10.1016/j.jtcvs.2015.07.012.Google Scholar
  71. 71.
    Imamura T, Chung B, Nguyen A, Rodgers D, Sayer G, Adatya S, et al. Decoupling between diastolic pulmonary artery pressure and pulmonary capillary wedge pressure as a prognostic factor after continuous flow ventricular assist device implantation. Circ Heart Fail. 2017;10(9).  https://doi.org/10.1161/CIRCHEARTFAILURE.117.003882.
  72. 72.
    Imamura T, Kim G, Raikhelkar J, Sarswat N, Kalantari S, Smith B, et al. Decoupling between diastolic pulmonary arterial pressure and pulmonary arterial wedge pressure at incremental left ventricular assist device (LVAD) speeds is associated with worse prognosis after LVAD implantation. J Card Fail. 2018;24(9):575–82.  https://doi.org/10.1016/j.cardfail.2018.08.003.Google Scholar
  73. 73.
    Haglund NA, Burdorf A, Jones T, Shostrom V, Um J, Ryan T, et al. Inhaled milrinone after left ventricular assist device implantation. J Card Fail. 2015;21(10):792–7.  https://doi.org/10.1016/j.cardfail.2015.04.011.Google Scholar
  74. 74.
    Argenziano M, Choudhri AF, Moazami N, et al. Randomized, double-blind trial of inhaled nitric oxide in LVAD recipients with pulmonary hypertension. Ann Thorac Surg. 1998;65(2):340–5.Google Scholar
  75. 75.
    Potapov E, Meyer D, Swaminathan M, Ramsay M, el Banayosy A, Diehl C, et al. Inhaled nitric oxide after left ventricular assist device implantation: a prospective, randomized, double-blind, multicenter, placebo-controlled trial. J Heart Lung Transplant. 2011;30(8):870–8.  https://doi.org/10.1016/j.healun.2011.03.005.Google Scholar
  76. 76.
    Tedford RJ, Hemnes AR, Russell SD, Wittstein IS, Mahmud M, Zaiman AL, et al. PDE5A inhibitor treatment of persistent pulmonary hypertension after mechanical circulatory support. Circ Heart Fail. 2008;1(4):213–9.  https://doi.org/10.1161/CIRCHEARTFAILURE.108.796789.Google Scholar
  77. 77.
    Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K, Moore SA, et al. The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32(2):157–87.  https://doi.org/10.1016/j.healun.2012.09.013.Google Scholar
  78. 78.
    LaRue SJ, Garcia-Cortes R, Nassif ME, et al. Treatment of secondary pulmonary hypertension with bosentan after left ventricular assist device implantation. Cardiovasc Ther. 2015;33(2):50–5.  https://doi.org/10.1111/1755-5922.12111.Google Scholar
  79. 79.
    Clinical study to assess the efficacy and safety of macitentan in patients with pulmonary hypertension after left ventricular assist device implantation—full-text view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02554903. Accessed 29 Nov 2018.
  80. 80.
    Shehab S, Macdonald PS, Keogh AM, Kotlyar E, Jabbour A, Robson D, et al. Long-term biventricular HeartWare ventricular assist device support—case series of right atrial and right ventricular implantation outcomes. J Heart Lung Transplant. 2016;35(4):466–73.  https://doi.org/10.1016/j.healun.2015.12.001.Google Scholar
  81. 81.
    Tran HA, Pollema TL, Silva Enciso J, Greenberg BH, Barnard DD, Adler ED, et al. Durable biventricular support using right atrial placement of the HeartWare HVAD. ASAIO J. 2018;64(3):323–7.  https://doi.org/10.1097/MAT.0000000000000645.Google Scholar
  82. 82.
    Lavee J, Mulzer J, Krabatsch T, Marasco S, McGiffin D, Garbade J, et al. An international multicenter experience of biventricular support with HeartMate 3 ventricular assist systems. J Heart Lung Transplant. 2018;37(12):1399–402.  https://doi.org/10.1016/j.healun.2018.08.008.Google Scholar
  83. 83.
    Kobashigawa J, Zuckermann A, Macdonald P, Leprince P, Esmailian F, Luu M, et al. Report from a consensus conference on primary graft dysfunction after cardiac transplantation. J Heart Lung Transplant. 2014;33(4):327–40.  https://doi.org/10.1016/j.healun.2014.02.027.Google Scholar
  84. 84.
    Jessup M, Banner N, Brozena S, Campana C, Costard-Jäckle A, Dengler T, et al. Optimal pharmacologic and non-pharmacologic management of cardiac transplant candidates: approaches to be considered prior to transplant evaluation: International Society for Heart and Lung Transplantation Guidelines for the Care of Cardiac Transplant Candidates—2006. J Heart Lung Transplant. 2006;25(9):1003–23.  https://doi.org/10.1016/j.healun.2006.06.007.Google Scholar
  85. 85.
    Vakil K, Duval S, Sharma A, Adabag S, Abidi KS, Taimeh Z, et al. Impact of pre-transplant pulmonary hypertension on survival after heart transplantation: a UNOS registry analysis. Int J Cardiol. 2014;176(3):595–9.  https://doi.org/10.1016/j.ijcard.2014.08.072.Google Scholar
  86. 86.
    De Santo LS, Buonocore M, Agrusta F, et al. Pattern of resolution of pulmonary hypertension, long-term allograft right ventricular function, and exercise capacity in high-risk heart transplant recipients listed under oral sildenafil. Clin Transpl. 2014;28(7):837–43.  https://doi.org/10.1111/ctr.12387.Google Scholar
  87. 87.
    Pons J, Leblanc M-H, Bernier M, Cantin B, Bourgault C, Bergeron S, et al. Effects of chronic sildenafil use on pulmonary hemodynamics and clinical outcomes in heart transplantation. J Heart Lung Transplant. 2012;31(12):1281–7.  https://doi.org/10.1016/j.healun.2012.09.009.Google Scholar
  88. 88.
    Stobierska-Dzierzek B, Awad H, Michler RE. The evolving management of acute right-sided heart failure in cardiac transplant recipients. J Am Coll Cardiol. 2001;38(4):923–31.  https://doi.org/10.1016/S0735-1097(01)01486-3.Google Scholar
  89. 89.
    Chambers DC, Cherikh WS, Goldfarb SB, Hayes D Jr, Kucheryavaya AY, Toll AE, et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: thirty-fifth adult lung and heart-lung transplant report—2018; focus theme: multiorgan transplantation. J Heart Lung Transplant. 2018;37(10):1169–83.  https://doi.org/10.1016/j.healun.2018.07.020.Google Scholar
  90. 90.
    Sildenafil in US heart failure patients (SilHF-US)—full-text view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03460470. Accessed 6 Dec 2018.
  91. 91.
    Pulmonary vascular disease phenomics program PVDOMICS—full-text view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02980887. Accessed 6 Dec 2018.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sriram D. Rao
    • 1
  • Jonathan N. Menachem
    • 2
  • Edo Y. Birati
    • 1
  • Jeremy A. Mazurek
    • 1
    • 3
    Email author
  1. 1.Advanced Heart Failure/Transplantation Program, Division of Cardiovascular MedicineHospital of the University of PennsylvaniaPhiladelphiaUSA
  2. 2.Advanced Heart Failure and Cardiac Transplant Program, Advanced Congenital Cardiac Therapies, Division of Cardiovascular MedicineVanderbilt University Medical CenterNashvilleUSA
  3. 3.Pulmonary Hypertension Program, Division of Cardiovascular MedicineHospital of the University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations