Advertisement

Current Heart Failure Reports

, Volume 15, Issue 4, pp 260–269 | Cite as

Prevention of Cardiotoxicities With Traditional and Novel Chemotherapeutic Agents

  • Zarina Sharalaya
  • Patrick Collier
Pharmacologic Therapy (W Tang, Section Editor)
  • 184 Downloads
Part of the following topical collections:
  1. Topical Collection on Pharmacologic Therapy

Abstract

Purpose of Review

This review will discuss strategies to prevent cardiotoxicity associated with chemotherapeutics. Forty years ago, investigators identified dose-dependent cardiotoxicity related to anthracycline-based regimens. Over recent decades, the development of more selective, mechanism-based chemotherapeutics has been associated with both on-target and off-target adverse cardiovascular sequelae.

Recent Findings

Strategies to prevent or attenuate cardiotoxicities include limitation of anthracycline dose, appropriate patient selection, referral/access to cardio-oncology programs, early recognition of cardiac side effects, active cardio-surveillance, cardio-protective medical therapy, treatment-specific concerns, and follow-up. The importance of accurate diagnosis of cardiotoxicity is important as false-positive testing may result in inappropriate holding or stopping potentially life-saving chemotherapy. Data to support use of cardio-protective medical therapy to prevent chemotherapy-related cardiotoxicity is modest at best, limited by marginal effect size, small patient numbers, and short follow-up.

Summary

The rapid growth in cardio-oncology clinics may facilitate larger multi-center randomized controlled trials in this area.

Keywords

Chemotherapy Cardiotoxicity Prevention Anthracycline Cardiomyopathy Heart failure Novel chemotherapeutics 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. 1.
    Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009;53(24):2231–47.CrossRefPubMedGoogle Scholar
  2. 2.
    Von Hoff DD, Layard MW, Basa P, Davis HL Jr, Von Hoff AL, Rozencweig M, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91(5):710–7.CrossRefGoogle Scholar
  3. 3.
    Moslehi JJ. Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med. 2016;375(15):1457–67.CrossRefPubMedGoogle Scholar
  4. 4.
    Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2014;15(10):1063–93.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Khan AA, Ashraf A, Singh R, Rahim A, Rostom W, Hussain M, et al. Incidence, time of occurrence and response to heart failure therapy in patients with anthracycline cardiotoxicity. Intern Med J. 2017;47(1):104–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Hequet O, Le QH, Moullet I, Pauli E, Salles G, Espinouse D, et al. Subclinical late cardiomyopathy after doxorubicin therapy for lymphoma in adults. J Clin Oncol. 2004;22(10):1864–71.CrossRefPubMedGoogle Scholar
  7. 7.
    Kloth JS, Pagani A, Verboom MC, Malovini A, Napolitano C, Kruit WH, et al. Incidence and relevance of QTc-interval prolongation caused by tyrosine kinase inhibitors. Br J Cancer. 2015;112(6):1011–6.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fradley MG, Brown AC, Shields B, Viganego F, Damrongwatanasuk R, Patel AA, et al. Developing a comprehensive cardio-oncology program at a cancer institute: the Moffitt Cancer Center experience. Oncol Rev. 2017;11(2):340.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Buza V, Rajagopalan B, Curtis AB. Cancer treatment-induced arrhythmias: focus on chemotherapy and targeted therapies. Circ Arrhythm Electrophysiol. 2017;10(8):e005443.CrossRefPubMedGoogle Scholar
  10. 10.
    • Porta-Sanchez A, Gilbert C, Spears D, Amir E, Chan J, Nanthakumar K, et al. Incidence, diagnosis, and management of QT prolongation induced by cancer therapies: a systematic review. J Am Heart Assoc. 2017;6(12). A systematic review assessing the incidence of QT prolongation for a variety of cancer drugs and the implications in the long term. As there are no formal guidelines in place for monitoring of QT interval during chemotherapy, the author provides a helpful approach to monitoring these patients during their treatment course. Google Scholar
  11. 11.
    Hensley ML, Hagerty KL, Kewalramani T, Green DM, Meropol NJ, Wasserman TH, et al. American Society of Clinical Oncology 2008 clinical practice guideline update: use of chemotherapy and radiation therapy protectants. J Clin Oncol. 2009;27(1):127–45.CrossRefPubMedGoogle Scholar
  12. 12.
    Cheuk DK, Sieswerda E, van Dalen EC, Postma A, Kremer LC. Medical interventions for treating anthracycline-induced symptomatic and asymptomatic cardiotoxicity during and after treatment for childhood cancer. Cochrane Database Syst Rev. 2016;23(8):CD008011.Google Scholar
  13. 13.
    Venturini M, Michelotti A, Del Mastro L, Gallo L, Carnino F, Garrone O, et al. Multicenter randomized controlled clinical trial to evaluate cardioprotection of dexrazoxane versus no cardioprotection in women receiving epirubicin chemotherapy for advanced breast cancer. J Clin Oncol. 1996;14(12):3112–20.CrossRefPubMedGoogle Scholar
  14. 14.
    Asselin BL, Devidas M, Chen L, Franco VI, Pullen J, Borowitz MJ, et al. Cardioprotection and safety of dexrazoxane in patients treated for newly diagnosed T-cell acute lymphoblastic leukemia or advanced-stage lymphoblastic non-Hodgkin lymphoma: a report of the Children’s Oncology Group Randomized Trial Pediatric Oncology Group 9404. J Clin Oncol. 2016;34(8):854–62.CrossRefPubMedGoogle Scholar
  15. 15.
    Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Card Fail. 2017;23(8):628–51.CrossRefPubMedGoogle Scholar
  16. 16.
    Henriksen PA. Anthracycline cardiotoxicity: an update on mechanisms, monitoring and prevention. Heart. 2017.Google Scholar
  17. 17.
    Cardinale D, Colombo A, Sandri MT, Lamantia G, Colombo N, Civelli M, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation. 2006;114(23):2474–81.CrossRefPubMedGoogle Scholar
  18. 18.
    Kalay N, Basar E, Ozdogru I, Er O, Cetinkaya Y, Dogan A, et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2006;48(11):2258–62.CrossRefPubMedGoogle Scholar
  19. 19.
    Georgakopoulos P, Roussou P, Matsakas E, Karavidas A, Anagnostopoulos N, Marinakis T, et al. Cardioprotective effect of metoprolol and enalapril in doxorubicin-treated lymphoma patients: a prospective, parallel-group, randomized, controlled study with 36-month follow-up. Am J Hematol. 2010;85(11):894–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Kaya MG, Ozkan M, Gunebakmaz O, Akkaya H, Kaya EG, Akpek M, et al. Protective effects of nebivolol against anthracycline-induced cardiomyopathy: a randomized control study. Int J Cardiol. 2013;167(5):2306–10.CrossRefPubMedGoogle Scholar
  21. 21.
    Bosch X, Rovira M, Sitges M, Domenech A, Ortiz-Perez JT, de Caralt TM, et al. Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the OVERCOME trial (preventiOn of left Ventricular dysfunction with Enalapril and caRvedilol in patients submitted to intensive ChemOtherapy for the treatment of Malignant hEmopathies). J Am Coll Cardiol. 2013;61(23):2355–62.CrossRefPubMedGoogle Scholar
  22. 22.
    Gulati G, Heck SL, Ree AH, Hoffmann P, Schulz-Menger J, Fagerland MW, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 x 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J. 2016;37(21):1671–80.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348(14):1309–21.CrossRefPubMedGoogle Scholar
  24. 24.
    Akpek M, Ozdogru I, Sahin O, Inanc M, Dogan A, Yazici C, et al. Protective effects of spironolactone against anthracycline-induced cardiomyopathy. Eur J Heart Fail. 2015;17(1):81–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Avila MS, Ayub-Ferreira SM, de Barros Wanderley Junior MR, Cruz FDD, Goncalves Brandao SM, Carvalho Rigaud VO, et al. Carvedilol for prevention of chemotherapy related cardiotoxicity. J Am Coll Cardiol. 2018;3.Google Scholar
  26. 26.
    Guglin M, Munster P, Fink A, Krischer J. Lisinopril or Coreg CR in reducing cardiotoxicity in women with breast cancer receiving trastuzumab: a rationale and design of a randomized clinical trial. Am Heart J. 2017;188:87–92.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Menna P, Salvatorelli E, Minotti G. Anthracycline degradation in cardiomyocytes: a journey to oxidative survival. Chem Res Toxicol. 2010;23(1):6–10.CrossRefPubMedGoogle Scholar
  28. 28.
    Schupp N, Schmid U, Heidland A, Stopper H. Rosuvastatin protects against oxidative stress and DNA damage in vitro via upregulation of glutathione synthesis. Atherosclerosis. 2008;199(2):278–87.CrossRefPubMedGoogle Scholar
  29. 29.
    Feleszko W, Mlynarczuk I, Balkowiec-Iskra EZ, Czajka A, Switaj T, Stoklosa T, et al. Lovastatin potentiates antitumor activity and attenuates cardiotoxicity of doxorubicin in three tumor models in mice. Clin Cancer Res. 2000;6(5):2044–52.PubMedGoogle Scholar
  30. 30.
    Acar Z, Kale A, Turgut M, Demircan S, Durna K, Demir S, et al. Efficiency of atorvastatin in the protection of anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2011;58(9):988–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Seicean S, Seicean A, Plana JC, Budd GT, Marwick TH. Effect of statin therapy on the risk for incident heart failure in patients with breast cancer receiving anthracycline chemotherapy: an observational clinical cohort study. J Am Coll Cardiol. 2012;60(23):2384–90.CrossRefPubMedGoogle Scholar
  32. 32.
    Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82.CrossRefPubMedGoogle Scholar
  33. 33.
    Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365(14):1273–83.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    •• Ganz PA, Romond EH, Cecchini RS, Rastogi P, Geyer CE Jr, Swain SM, et al. Long-term follow-up of cardiac function and quality of life for patients in NSABP protocol B-31/NRG oncology: a randomized trial comparing the safety and efficacy of doxorubicin and cyclophosphamide (AC) followed by paclitaxel with AC followed by paclitaxel and trastuzumab in patients with node-positive breast cancer with tumors overexpressing human epidermal growth factor receptor 2. J Clin Oncol. 2017;35(35):3942–8. A study assessing the long-term outcomes of patients receiving trastuzumab and adjuvant anthracycline or taxane-based chemotherapy. While past studies have revealed early cardiac toxicities from trastuzumab and adjuvant chemotherapy, this study provides new evidence supporting the idea that the combination of these chemotherapies is actually well tolerated in the long term from a functional and symptomatic standpoint. CrossRefPubMedGoogle Scholar
  35. 35.
    Pituskin E, Mackey JR, Koshman S, Jassal D, Pitz M, Haykowsky MJ, et al. Multidisciplinary approach to novel therapies in cardio-oncology research (MANTICORE 101-breast): a randomized trial for the prevention of trastuzumab-associated cardiotoxicity. J Clin Oncol. 2017;35(8):870–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Wittayanukorn S, Qian J, Westrick SC, Billor N, Johnson B, Hansen RA. Prevention of trastuzumab and anthracycline-induced cardiotoxicity using angiotensin-converting enzyme inhibitors or beta-blockers in older adults with breast cancer. Am J Clin Oncol. 2017.Google Scholar
  37. 37.
    Saneeymehri SS, Markey KR, Mahipal A. Paradoxical effect of capecitabine in 5-fluorouracil-induced cardiotoxicity: a case vignette and literature review. J Oncol Pharm Pract. 2016;22(3):552–5.CrossRefPubMedGoogle Scholar
  38. 38.
    Polk A, Vaage-Nilsen M, Vistisen K, Nielsen DL. Cardiotoxicity in cancer patients treated with 5-fluorouracil or capecitabine: a systematic review of incidence, manifestations and predisposing factors. Cancer Treat Rev. 2013;39(8):974–84.CrossRefPubMedGoogle Scholar
  39. 39.
    Eskilsson J, Albertsson M. Failure of preventing 5-fluorouracil cardiotoxicity by prophylactic treatment with verapamil. Acta Oncol. 1990;29(8):1001–3.CrossRefPubMedGoogle Scholar
  40. 40.
    Cianci G, Morelli MF, Cannita K, Morese R, Ricevuto E, Di Rocco ZC, et al. Prophylactic options in patients with 5-fluorouracil-associated cardiotoxicity. Br J Cancer. 2003;88(10):1507–9.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Madeddu C, Deidda M, Piras A, Cadeddu C, Demurtas L, Puzzoni M, et al. Pathophysiology of cardiotoxicity induced by nonanthracycline chemotherapy. J Cardiovasc Med (Hagerstown). 2016;17(Suppl 1):S12–8.CrossRefGoogle Scholar
  42. 42.
    Altena R, Hummel YM, Nuver J, Smit AJ, Lefrandt JD, de Boer RA, et al. Longitudinal changes in cardiac function after cisplatin-based chemotherapy for testicular cancer. Ann Oncol. 2011;22(10):2286–93.CrossRefPubMedGoogle Scholar
  43. 43.
    Wang J, He D, Zhang Q, Han Y, Jin S, Qi F. Resveratrol protects against cisplatin-induced cardiotoxicity by alleviating oxidative damage. Cancer Biother Radiopharm. 2009;24(6):675–80.CrossRefPubMedGoogle Scholar
  44. 44.
    Xiao Y, Yin J, Wei J, Shang Z. Incidence and risk of cardiotoxicity associated with bortezomib in the treatment of cancer: a systematic review and meta-analysis. PLoS One. 2014;9(1):e87671.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sundararajan S, Kumar A, Poongkunran M, Kannan A, Vogelzang NJ. Cardiovascular adverse effects of targeted antiangiogenic drugs: mechanisms and management. Future Oncol. 2016;12(8):1067–80.CrossRefPubMedGoogle Scholar
  46. 46.
    Lenneman CG, Sawyer DB. Cardio-oncology: an update on cardiotoxicity of cancer-related treatment. Circ Res. 2016;118(6):1008–20.CrossRefPubMedGoogle Scholar
  47. 47.
    Maitland ML, Bakris GL, Black HR, Chen HX, Durand JB, Elliott WJ, et al. Initial assessment, surveillance, and management of blood pressure in patients receiving vascular endothelial growth factor signaling pathway inhibitors. J Natl Cancer Inst. 2010;102(9):596–604.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Elice F, Jacoub J, Rickles FR, Falanga A, Rodeghiero F. Hemostatic complications of angiogenesis inhibitors in cancer patients. Am J Hematol. 2008;83(11):862–70.CrossRefPubMedGoogle Scholar
  49. 49.
    Scappaticci FA, Skillings JR, Holden SN, Gerber HP, Miller K, Kabbinavar F, et al. Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. J Natl Cancer Inst. 2007;99(16):1232–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Tebbutt NC, Murphy F, Zannino D, Wilson K, Cummins MM, Abdi E, et al. Risk of arterial thromboembolic events in patients with advanced colorectal cancer receiving bevacizumab. Ann Oncol. 2011;22(8):1834–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Ghatalia P, Morgan CJ, Je Y, Nguyen PL, Trinh QD, Choueiri TK, et al. Congestive heart failure with vascular endothelial growth factor receptor tyrosine kinase inhibitors. Crit Rev Oncol Hematol. 2015;94(2):228–37.CrossRefPubMedGoogle Scholar
  52. 52.
    Wiczer TE, Levine LB, Brumbaugh J, Coggins J, Zhao Q, Ruppert AS, et al. Cumulative incidence, risk factors, and management of atrial fibrillation in patients receiving ibrutinib. Blood Adv. 2017;1(20):1739–48.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Heinzerling L, Ott PA, Hodi FS, Husain AN, Tajmir-Riahi A, Tawbi H, et al. Cardiotoxicity associated with CTLA4 and PD1 blocking immunotherapy. J Immunother Cancer. 2016;4:50.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Mahmood SS, Fradley MG, Cohen JV, Nohria A, Reynolds KL, Heinzerling LM, et al. Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol. 2018;71(16):1755–64.CrossRefPubMedGoogle Scholar
  55. 55.
    Robison LL, Hudson MM. Survivors of childhood and adolescent cancer: life-long risks and responsibilities. Nat Rev Cancer. 2014;14(1):61–70.CrossRefPubMedGoogle Scholar
  56. 56.
    Mulrooney DA, Armstrong GT, Huang S, Ness KK, Ehrhardt MJ, Joshi VM, et al. Cardiac outcomes in adult survivors of childhood cancer exposed to cardiotoxic therapy: a cross-sectional study. Ann Intern Med. 2016;164(2):93–101.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    van der Pal HJ, van Dalen EC, van Delden E, van Dijk IW, Kok WE, Geskus RB, et al. High risk of symptomatic cardiac events in childhood cancer survivors. J Clin Oncol. 2012;30(13):1429–37.CrossRefPubMedGoogle Scholar
  58. 58.
    Armstrong GT, Joshi VM, Ness KK, Marwick TH, Zhang N, Srivastava D, et al. Comprehensive echocardiographic detection of treatment-related cardiac dysfunction in adult survivors of childhood cancer: results from the St. Jude Lifetime Cohort Study. J Am Coll Cardiol. 2015;65(23):2511–22.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Magdy T, Burmeister BT, Burridge PW. Validating the pharmacogenomics of chemotherapy-induced cardiotoxicity: what is missing? Pharmacol Ther. 2016;168:113–25.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart and Vascular InstituteThe Cleveland Clinic FoundationClevelandUSA

Personalised recommendations