Advertisement

Current Heart Failure Reports

, Volume 15, Issue 4, pp 239–249 | Cite as

The Confounding Effects of Non-cardiac Pathologies on the Interpretation of Cardiac Biomarkers

  • Marin Nishimura
  • Alison Brann
  • Kay-Won Chang
  • Alan S Maisel
Biomarkers of Heart Failure (W Tang and J Grodin, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Biomarkers of Heart Failure

Abstract

Purpose of Review

Cardiac biomarkers play important roles in routine evaluation of cardiac patients. But while these biomarkers can be extremely valuable, none of them should ever be used by themselves—without adding the clinical context. This paper explores the non-cardiac pathologies that can be seen with the cardiac biomarkers most commonly used.

Recent Findings

High-sensitivity troponin assay gained FDA approval for use in the USA, and studies demonstrated its diagnostic utility can be extended to patients with renal impairment. Gender-specific cut points may be utilized for high-sensitivity troponin assays. In the realm of the natriuretic peptides, studies demonstrated states of natriuretic peptide deficiency in obesity and in subjects of African-American race. Regardless, BNP and NT-proBNP both retained prognostic utilities across a variety of comorbid conditions. We are rapidly gaining clinical evidence with use of soluble ST2 and procalcitonin levels in management of cardiac disease states.

Summary

In order to get the most utility from their measurement, one must be aware of non-cardiac pathologies that may affect the levels of biomarkers as although many of these are actually true values, they may not represent the disease we are trying to delineate.

A few take-home points are as follows:
  1. 1.

    A biomarker value should never be used without clinical context

     
  2. 2.

    Serial sampling of biomarkers is often helpful

     
  3. 3.

    Panels of biomarkers may be valuable

     

Keywords

Heart failure Cardiac biomarkers Non-cardiac pathologies 

Notes

Compliance with Ethical Standards

Conflict of Interest

Marin Nishimura, Alison Brann, and Kay-Won Chang each declare no conflicts of interest.

Alan S. Maisel reports receiving research grants from Roche and consulting for Critical Diagnostics.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. 1.
    Jaffe AS. Third universal definition of myocardial infarction. Clin Biochem. 2013;46:1–4.CrossRefPubMedGoogle Scholar
  2. 2.
    Department of Health and Human Services F and DA: 510 (k) summary, Elecsys Troponin T Gen 5 STAT 2017.Google Scholar
  3. 3.
    Apple FS, Collinson PO. Analytical characteristics of high-sensitivity cardiac troponin assays. Clin Chem. 2012;58:54–61.CrossRefPubMedGoogle Scholar
  4. 4.
    Defilippi CR, Herzog CA. Interpreting cardiac biomarkers in the setting of chronic kidney disease. Clin Chem. 2017;63:59–65.CrossRefPubMedGoogle Scholar
  5. 5.
    deFilippi C, Seliger SL, Kelley W, Duh S-H, Hise M, Christenson RH, et al. Interpreting cardiac troponin results from high-sensitivity assays in chronic kidney disease without acute coronary syndrome. Clin Chem [Internet]. 2012;58:1342–51. Available from: http://www.clinchem.org/cgi/doi/10.1373/clinchem.2012.185322 CrossRefGoogle Scholar
  6. 6.
    Twerenbold R, Wildi K, Jaeger C, Gimenez MR, Reiter M, Reichlin T, et al. Optimal cutoff levels of more sensitive cardiac troponin assays for the early diagnosis of myocardial infarction in patients with renal dysfunction. Circulation. 2015;131:2041–50.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lamb EJ, Kenny C, Abbas NA, John RI, Webb MC, Price CP, Vickery S: Cardiac troponin I concentration is commonly increased in nondialysis patients with CKD: experience with a sensitive assay. Am J Kidney Dis [Internet] Elsevier Inc., 2007; 49:507–516. Available from: doi:  https://doi.org/10.1053/j.ajkd.2007.01.015
  8. 8.
    Chen M, Gerson H, Eintracht S, Nessim SJ, MacNamara E: Effect of hemodialysis on levels of high-sensitivity cardiac troponin T. Am J Cardiol [Internet] Elsevier, 2017 [cited 2017 Dec 9]; 120:2061–2064. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29033047
  9. 9.
    Gunsolus I, Sandoval Y, Smith SW, Sexter A, Schulz K, Herzog CA, Apple FS: Renal dysfunction influences the diagnostic and prognostic performance of high-sensitivity cardiac troponin I. J Am Soc Nephrol [Internet] 2017; :ASN.2017030341. Available from: doi:  https://doi.org/10.1681/ASN.2017030341
  10. 10.
    • Twerenbold R, Badertscher P, Boeddinghaus J, et al.: 0/1-hour triage algorithm for myocardial infarction in patients with renal dysfunction. Circulation 2017; 136. This study investigated the safety of 0/1-h algorithm based on hs-cTnT and hs-cTnI in patients with CKD. Google Scholar
  11. 11.
    Michos ED, Wilson LM, Yeh H-C, Berger Z, Suarez-Cuervo C, Stacy SR, Bass EB: Prognostic value of cardiac troponin in patients with chronic kidney disease without suspected acute coronary syndrome. Ann Intern Med [Internet] 2014 [cited 2017 Nov 30]; 161:491. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25111499, 501
  12. 12.
    • Gregg LP, Adams-Huet B, Li X, Colbert G, Jain N, de Lemos JA, et al. Effect modification of chronic kidney disease on the association of circulating and imaging cardiac biomarkers with outcomes. J Am Heart Assoc. 2017;6:e005235. This study investigated the association between biomarkers (NT-proBNP, BNP, or hs-cTn) and outcome in patients with CKD. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Scheitz JF, Mochmann H, Erdur H, Tütüncü S, Georg K, Grittner U, Laufs U, Endres M, Nolte CH: Prognostic relevance of cardiac troponin T levels and their dynamic changes measured with a high-sensitivity assay in acute ischaemic stroke: analyses from the TRELAS cohort. Int J Cardiol [Internet] Elsevier Ireland Ltd, 2014; 177:886–893. Available from: doi:  https://doi.org/10.1016/j.ijcard.2014.10.036
  14. 14.
    Jauch EC, Saver JL, Adams HP, et al.: AHA/ASA Guideline: guidelines for the early management of patients with acute ischemic stroke. Stroke 2013; :870–947.Google Scholar
  15. 15.
    Ndumele CE, Cobb L, Lazo M, Bello NA, Shah A, Nambi V, Blumenthal RS, Gerstenblith G, Solomon SD, Ballantyne CM, Selvin E, Coresh J: Weight history and subclinical myocardial damage. Clin Chem [Internet] 2017; 63:clinchem.2017.282798. Available from: doi:  https://doi.org/10.1373/clinchem.2017.282798
  16. 16.
    Lyngbakken MN, Omland T, Nordstrand N, Norseth J, Hjelmesæth J, Hofsø D: Effect of weight loss on subclinical myocardial injury: a clinical trial comparing gastric bypass surgery and intensive lifestyle intervention. Eur J Prev Cardiol [Internet] 2016 [cited 2017 Dec 31]; 23:874–880. Available from: doi:  https://doi.org/10.1177/2047487315618796
  17. 17.
    Normann J, Mueller M, Biener M, Vafaie M, Katus HA, Giannitsis E: Effect of older age on diagnostic and prognostic performance of high-sensitivity troponin T in patients presenting to an emergency department. Am Heart J [Internet] Mosby, Inc., 2012; 164:698–705.e4. Available from: doi:  https://doi.org/10.1016/j.ahj.2012.08.003
  18. 18.
    Hammarsten O, Fu MLX, Sigurjonsdottir R, Petzold M, Said L, Landin-Wilhelmsen K, et al. Troponin T percentiles from a random population sample, emergency room patients and patients with myocardial infarction. Clin Chem. 2012;58:628–37.CrossRefPubMedGoogle Scholar
  19. 19.
    Reiter M, Twerenbold R, Reichlin T, Haaf P, Peter F, Meissner J, et al. Early diagnosis of acute myocardial infarction in the elderly using more sensitive cardiac troponin assays. Eur Heart J. 2011;32:1379–89.CrossRefPubMedGoogle Scholar
  20. 20.
    Carlsson AC, Bandstein N, Roos A, Hammarsten O, Holzmann MJ: High-sensitivity cardiac troponin T levels in the emergency department in patients with chest pain but no myocardial infarction. Int J Cardiol [Internet] Elsevier Ireland Ltd, 2017; 228:253–259. Available from: doi:  https://doi.org/10.1016/j.ijcard.2016.11.087
  21. 21.
    Gore MO, Seliger SL, Defilippi CR, Nambi V, Christenson RH, Hashim IA, et al. Age- and sex-dependent upper reference limits for the high-sensitivity cardiac troponin T assay. J Am Coll Cardiol. 2014;63:1441–8.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lew J, Sanghavi M, Ayers CR, McGuire DK, Omland T, Atzler D, et al. Sex-based differences in cardiometabolic biomarkers. Circulation. 2017;135:544–55.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cullen L, Greenslade JH, Carlton EW, Than M, Pickering JW, Ho A, et al. Sex-specific versus overall cut points for a high sensitivity troponin I assay in predicting 1-year outcomes in emergency patients presenting with chest pain. Heart [Internet]. 2016;102:120–6. Available from.  https://doi.org/10.1136/heartjnl-2015-308506.CrossRefGoogle Scholar
  24. 24.
    Yan W, Wu F, Morser J, Wu Q. Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme. Proc Natl Acad Sci [Internet]. 2000;97:8525–9. Available from.  https://doi.org/10.1073/pnas.150149097.CrossRefGoogle Scholar
  25. 25.
    Sawada Y, Suda M, Yokoyama H, Kanda T, Sakamaki T, Tanaka S, et al. Stretch-induced hypertrophic growth of cardiocytes and processing of brain-type natriuretic peptide are controlled by proprotein-processing endoprotease furin. J Biol Chem. 1997;272:20545–54.CrossRefPubMedGoogle Scholar
  26. 26.
    Nakagawa O, Ogawa Y, Itoh H, Suga SI, Komatsu Y, Kishimoto I, et al. Rapid transcriptional activation and early mRNA turnover of brain natriuretic peptide in cardiocyte hypertrophy: evidence for brain natriuretic peptide as an “emergency” cardiac hormone against ventricular overload. J Clin Investig. 1995;96:1280–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Maeda K, Tsutamoto T, Wada A, Hisanaga T, Kinoshita M: Plasma brain natriuretic peptide as a biochemical marker of high left ventricular end-diastolic pressure in patients with symptomatic left ventricular dysfunction. Am Heart J [Internet] 1998 [cited 2017 Nov 19]; 135:825–832. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9588412
  28. 28.
    Richards AM, Crozier IG, Yandle TG, Espiner EA, Ikram H, Nicholls MG. Brain natriuretic factor: regional plasma concentrations and correlations with haemodynamic state in cardiac disease. British heart journal [Internet]. 1993;69:414–7. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1025104&tool=pmcentrez&rendertype=abstractCrossRefGoogle Scholar
  29. 29.
    Lainchbury JG, Nicholls MG, Espiner EA, Ikram H, Yandle TG, Richards AM: Regional plasma levels of cardiac peptides and their response to acute neutral endopeptidase inhibition in man. Clin Sci (London, England : 1979) [Internet] 1998 [cited 2017 Nov 19]; 95:547–555. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9791040
  30. 30.
    Maisel AS, Krishnaswamy P, Nowak RM, et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med [Internet]. 2002;347:161–7. Available from:.  https://doi.org/10.1056/NEJMoa020233.CrossRefGoogle Scholar
  31. 31.
    Yancy CW, Jessup M, Bozkurt B, Butler J, Casey Jr DE, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JJV, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WHW, Tsai EJ, Wilkoff BL: 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol [Internet] Elsevier, 2013; 62:1495–1539. Available from: doi:  https://doi.org/10.1016/j.jacc.2013.05.020
  32. 32.
    Chow SL, Maisel AS, Anand I, Bozkurt B, de Boer RA, Felker GM, et al. Role of biomarkers for the prevention, assessment, and management of heart failure: a scientific statement from the American Heart Association. Circulation. 2017;135:e1054–91.CrossRefPubMedGoogle Scholar
  33. 33.
    Krishnaswamy P, Lubien E, Clopton P, Koon J, Kazanegra R, Wanner E, Gardetto N, Garcia A, DeMaria A, Maisel AS: Utility of B-natriuretic peptide levels in identifying patients with left ventricular systolic or diastolic dysfunction. Am J Med [Internet] 2001 [cited 2017 Nov 19]; 111:274–279. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11566457
  34. 34.
    Chang KW, Hsu JC, Toomu A, Fox S, Maisel AS: Clinical applications of biomarkers in atrial fibrillation. American Journal of Medicine [Internet] Elsevier Inc., 2017; Available from: doi:  https://doi.org/10.1016/j.amjmed.2017.08.003, 2017
  35. 35.
    Lim P, Monin JL, Monchi M, Garot J, Pasquet A, Hittinger L, Vanoverschelde JL, Carayon A, Gueret P: Predictors of outcome in patients with severe aortic stenosis and normal left ventricular function: role of B-type natriuretic peptide. Eur Heart J [Internet] 2004 [cited 2017 Nov 19]; 25:2048–2053. Available from: doi:  https://doi.org/10.1016/j.ehj.2004.09.033
  36. 36.
    Ogawa A, Seino Y, Yamashita T, Ogata K, Takano T: Difference in elevation of N-terminal pro-BNP and conventional cardiac markers between patients with ST elevation vs non-ST elevation acute coronary syndrome. Circulation journal: official journal of the Japanese Circulation Society [Internet] 2006 [cited 2017 Nov 19]; 70:1372–1378. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17062956
  37. 37.
    Yildiz M, Sahin A, Behnes M, Akin İ: An expanding role of biomarkers in pulmonary arterial hypertension. Curr Pharm Biotechnol [Internet] 2017 [cited 2017 Nov 19]; 18:491–494. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28641568
  38. 38.
    McCullough PA, Nowak RM, McCord J, Hollander JE, Herrmann HC, Steg PG, Duc P, Westheim A, Omland T, Knudsen CW, Storrow AB, Abraham WT, Lamba S, Wu AH, Perez A, Clopton P, Krishnaswamy P, Kazanegra R, Maisel AS: B-type natriuretic peptide and clinical judgment in emergency diagnosis of heart failure: analysis from Breathing Not Properly (BNP) Multinational Study. Circulation [Internet] 2002 [cited 2017 Nov 19]; 106:416–422. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12135939
  39. 39.
    Cataliotti A, Malatino LS, Jougasaki M, Zoccali C, Castellino P, Giacone G, et al. Circulating natriuretic peptide concentrations in patients with end-stage renal disease: role of brain natriuretic peptide as a biomarker for ventricular remodeling. Mayo Clin Proc. 2001;76:1111–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Wahl HG, Graf S, Renz H, Fassbinder W. Elimination of the cardiac natriuretic peptides B-type natriuretic peptide (BNP) and N-terminal proBNP by hemodialysis. Clin Chem. 2004;50:1071–4.CrossRefPubMedGoogle Scholar
  41. 41.
    Takami Y, Horio T, Iwashima Y, Takiuchi S, Kamide K, Yoshihara F, et al. Diagnostic and prognostic value of plasma brain natriuretic peptide in non-dialysis-dependent CRF. Am J Kidney Dis. 2004;44:420–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Richards M, Nicholls MG, Espiner EA, Lainchbury JG, Troughton RW, Elliott J, Frampton CM, Crozier IG, Yandle TG, Doughty R, MacMahon S, Sharpe N: Comparison of B-type natriuretic peptides for assessment of cardiac function and prognosis in stable ischemic heart disease. J Am Coll Cardiol [Internet] Elsevier Masson SAS, 2006; 47:52–60. Available from: doi:  https://doi.org/10.1016/j.jacc.2005.06.085
  43. 43.
    Anwaruddin S, Lloyd-Jones DM, Baggish A, Chen A, Krauser D, Tung R, Chae C, Januzzi JL: Renal function, congestive heart failure, and amino-terminal pro-brain natriuretic peptide measurement: results from the ProBNP investigation of dyspnea in the emergency department (PRIDE) study. J Am Coll Cardiol [Internet] Elsevier Masson SAS, 2006; 47:91–97. Available from: doi:  https://doi.org/10.1016/j.jacc.2005.08.051
  44. 44.
    Wang TJ, Larson MG, Levy D, Benjamin EJ, Leip EP, Wilson PWF, et al. Impact of obesity on plasma natriuretic peptide levels. Circulation. 2004;109:594–600.CrossRefPubMedGoogle Scholar
  45. 45.
    Horwich TB, Hamilton MA, Fonarow GC: B-type natriuretic peptide levels in obese patients with advanced heart failure. J Am Coll Cardiol [Internet] Elsevier Masson SAS, 2006; 47:85–90. Available from: doi:  https://doi.org/10.1016/j.jacc.2005.08.050
  46. 46.
    Krauser DG, Lloyd-Jones DM, Chae CU, Cameron R, Anwaruddin S, Baggish AL, et al. Effect of body mass index on natriuretic peptide levels in patients with acute congestive heart failure: a ProBNP Investigation of Dyspnea in the Emergency Department (PRIDE) substudy. Am Heart J. 2005;149:744–50.CrossRefPubMedGoogle Scholar
  47. 47.
    Daniels LB, Clopton P, Vikas B, et al. How obesity affects the cut-points for B-type natriuretic peptide in the diagnosis of acute heart failure: results from the Breathing Not Properly Multinational Study. Am Heart J. 2006;151:999–1005.CrossRefPubMedGoogle Scholar
  48. 48.
    Bayes-Genis A, Lloyd-Jones DM, Kimmenade RRJ van Lainchbury JG, Richards AM, Ordoñez-Llanos J, Santaló M, Pinto YM, Januzzi JL. Effect of body mass index on diagnostic and prognostic usefulness of amino-terminal pro-brain natriuretic peptide in patients with acute dyspnea. Archives of Internal Medicine [Internet] American Medical Association, 2007 [cited 2017 3]; 167:400. Available from: doi:  https://doi.org/10.1001/archinte.167.4.400
  49. 49.
    Gentili A, Frangione MR, Albini E, Vacca C, Ricci MA, De Vuono S, et al. Modulation of natriuretic peptide receptors in human adipose tissue: molecular mechanisms behind the “natriuretic handicap” in morbidly obese patients. Translational Research [Internet] Elsevier Inc. 2017;186:52–61. Available from:.  https://doi.org/10.1016/j.trsl.2017.06.001.CrossRefGoogle Scholar
  50. 50.
    Standeven KF, Hess K, Carter AM, Rice GI, Cordell PA, Balmforth AJ, et al. Neprilysin, obesity and the metabolic syndrome. Int J Obes. 2011;35:1031–40.CrossRefGoogle Scholar
  51. 51.
    Shah Z, Wiley M, Sridhar AM, Masoomi R, Biria M, Lakkireddy D, Dawn B, Gupta K: Inverse correlation of venous brain natriuretic peptide levels with body mass index is due to decreased production. Cardiology [Internet] 2017; 137:159–166. Available from: doi:  https://doi.org/10.1159/000464111%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/28391273
  52. 52.
    Chen-Tournoux A, Khan AM, Baggish AL, Castro VM, Semigran MJ, McCabe EL, et al. Effect of weight loss after weight loss surgery on plasma N-terminal pro-B-type natriuretic peptide levels. Am J Cardiol. 2010;106:1450–5.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Maisel AS, Koon J, Krishnaswamy P, Kazenegra R, Clopton P, Gardetto N, Morrisey R, Garcia A, Chiu A, De Maria A. Utility of B-natriuretic peptide as a rapid, point-of-care test for screening patients undergoing echocardiography to determine left ventricular dysfunction. American Heart Journal [Internet] 2001 [cited 2017 19]; 141:367–374. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0002870301906908
  54. 54.
    Redfield MM, Rodeheffer RJ, Jacobsen SJ, Mahoney DW, Bailey KR, Burnett JC: Plasma brain natriuretic peptide concentration: impact of age and gender. J Am Coll Cardiol [Internet] Elsevier Masson SAS, 2002; 40:976–982. Available from: doi:  https://doi.org/10.1016/S0735-1097(02)02059-4
  55. 55.
    Maisel AS, Clopton P, Krishnaswamy P, Nowak RM, McCord J, Hollander JE, et al. Impact of age, race, and sex on the ability of B-type natriuretic peptide to aid in the emergency diagnosis of heart failure: results from the Breathing Not Properly (BNP) multinational study. Am Heart J. 2004;147:1078–84.CrossRefPubMedGoogle Scholar
  56. 56.
    Gupta DK, Claggett B, Wells Q, et al. Racial differences in circulating natriuretic peptide levels: the atherosclerosis risk in communities study. J Am Heart Assoc. 2015;4:1–9.Google Scholar
  57. 57.
    Gupta DK, de Lemos JA, Ayers CR, Berry JD, Wang TJ. Racial differences in natriuretic peptide levels: the Dallas Heart Study. JACC: Heart Failure. 2015;3:513–9.PubMedGoogle Scholar
  58. 58.
    • Bajaj NS, Gutiérrez OM, Arora G, Judd SE, Patel N, Bennett A, Prabhu SD, Howard G, Howard VJ, Cushman M, Arora P: Racial differences in plasma levels of N-terminal pro-B-type natriuretic peptide and outcomes. JAMA Cardiology [Internet] 2017; 35294. Available from: doi:  https://doi.org/10.1001/jamacardio.2017.4207. This study investigated the racial differences in NT-proBNP levels and association with clinical outcomes.
  59. 59.
    Zhao J, Li S, Ren L, Guo X, Qi X: Pro-brain natriuretic peptide and troponin T-hypersensitivity levels correlate with the severity of liver dysfunction in liver cirrhosis. Am J Med Sci [Internet] Elsevier, 2017; 354:131–139. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0002962917302082
  60. 60.
    Bando S, Soeki T, Matsuura T, Yagi S, Fukuda D, Hirotsugu Y, et al. Plasma brain natriuretic peptide (BNP) level is elevated in patients with cancer. Eur Heart J [Internet]. 2013;34:4572. Available from: http://eurheartj.oxfordjournals.org/content/34/suppl_1/4572 CrossRefGoogle Scholar
  61. 61.
    Pascual-Figal DA, Januzzi JL: The biology of ST2: the International ST2 Consensus Panel. American Journal of Cardiology [Internet] Elsevier Inc., 2015; 115:3B–7B. Available from: doi:  https://doi.org/10.1016/j.amjcard.2015.01.034
  62. 62.
    Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie ANJ, Lee RT. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Investig. 2007;117:1538–49.CrossRefPubMedGoogle Scholar
  63. 63.
    Maisel AS, Di Somma S: Do we need another heart failure biomarker: focus on soluble suppression of tumorigenicity 2 (sST2). Eur Heart J [Internet] 2016; :ehw462. Available from: doi:  https://doi.org/10.1093/eurheartj/ehw462
  64. 64.
    Seki K, Sanada S, Kudinova AY, Steinhauser ML, Handa V, Gannon J, et al. Interleukin-33 prevents apoptosis and improves survival after experimental myocardial infarction through ST2 signaling. Circulation: Heart Failure. 2009;2:684–91.Google Scholar
  65. 65.
    Januzzi JL, Peacock WF, Maisel AS, et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea. Results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J Am Coll Cardiol. 2007;50:607–13.CrossRefPubMedGoogle Scholar
  66. 66.
    Lassus J, Gayat E, Mueller C, et al.: Incremental value of biomarkers to clinical variables for mortality prediction in acutely decompensated heart failure: the Multinational Observational Cohort on Acute Heart Failure (MOCA) study. Int J Cardiol [Internet] Elsevier Ireland Ltd, 2013; 168:2186–2194. Available from: doi:  https://doi.org/10.1016/j.ijcard.2013.01.228
  67. 67.
    Maisel AS, Richards AM, Pascual-Figal D, Mueller C: Serial ST2 testing in hospitalized patients with acute heart failure. Am J Cardiol [Internet] Elsevier Inc., 2015; 115:32B–37B. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0002914915001216
  68. 68.
    Breidthardt T, Balmelli C, Twerenbold R, Mosimann T, Espinola J, Haaf P, Thalmann G, Moehring B, Mueller M, Meller B, Reichlin T, Murray K, Ziller R, Benkert P, Osswald S, Mueller C: Heart failure therapy-induced early ST2 changes may offer long-term therapy guidance. J Card Fail [Internet] Elsevier Inc, 2013; 19:821–828. Available from: doi:  https://doi.org/10.1016/j.cardfail.2013.11.003
  69. 69.
    Manzano-Fernández S, Januzzi JL, Pastor-Pérez FJ, Bonaque-González JC, Boronat-Garcia M, Pascual-Figal DA, et al. Serial monitoring of soluble interleukin family member ST2 in patients with acutely decompensated heart failure. Cardiology (Switzerland). 2012;122:158–66.Google Scholar
  70. 70.
    Aspromonte N, Gulizia MM, Clerico A, di Tano G, Emdin M, Feola M, et al. ANMCO/ELAS/SIBioC Consensus Document: biomarkers in heart failure. European Heart Journal, Supplement. 2017;19:D102–12.CrossRefGoogle Scholar
  71. 71.
    Dieplinger B, Januzzi JL, Steinmair M, Gabriel C, Poelz W, Haltmayer M, Mueller T: Analytical and clinical evaluation of a novel high-sensitivity assay for measurement of soluble ST2 in human plasma—the Presage™ ST2 assay. Clin Chim Acta [Internet] Elsevier, 2009 [cited 2017 Nov 26]; 409:33–40. Available from: http://www.sciencedirect.com/science/article/pii/S0009898109004409
  72. 72.
    Bayes-Genis A, Zamora E, De Antonio M, Galán A, Vila J, Urrutia A, et al. Soluble ST2 serum concentration and renal function in heart failure. J Card Fail. 2013;19:768–75.CrossRefPubMedGoogle Scholar
  73. 73.
    Mueller T, Gegenhuber A, Kronabethleitner G, Leitner I, Haltmayer M, Dieplinger B. Plasma concentrations of novel cardiac biomarkers before and after hemodialysis session. Clinical Biochemistry [Internet] The Authors. 2015;48:1163–6. Available from:.  https://doi.org/10.1016/j.clinbiochem.2015.07.031.CrossRefGoogle Scholar
  74. 74.
    Gungor O, Unal HU, Guclu A, Gezer M, Eyileten T, Guzel FB, et al. IL-33 and ST2 levels in chronic kidney disease: associations with inflammation, vascular abnormalities, cardiovascular events, and survival. PLoS One. 2017;12:1–14.CrossRefGoogle Scholar
  75. 75.
    Hoogerwerf JJ, Tanck MWT, van Zoelen MAD, Wittebole X, Laterre P-F, van der Poll T. Soluble ST2 plasma concentrations predict mortality in severe sepsis. Intensive Care Med [Internet]. 2010;36:630–7. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2837188&tool=pmcentrez&rendertype=abstractCrossRefGoogle Scholar
  76. 76.
    Mueller T, Leitner I, Egger M, Haltmayer M, Dieplinger B: Association of the biomarkers soluble ST2, galectin-3 and growth-differentiation factor-15 with heart failure and other non-cardiac diseases. Clin Chim Acta [Internet] Elsevier B.V., 2015; 445:155–160. Available from: doi:  https://doi.org/10.1016/j.cca.2015.03.033
  77. 77.
    Liew FY, Pitman NI, McInnes IB: Disease-associated functions of IL-33: the new kid in the IL-1 family. Nature Reviews Immunology [Internet] Nature Publishing Group, 2010; 10:103–110. Available from doi:  https://doi.org/10.1038/nri2692
  78. 78.
    Chen LQ, De Lemos JA, Das SR, Ayers CR, Rohatgi A. Soluble ST2 is associated with all-cause and cardiovascular mortality in a population-based cohort: the Dallas Heart Study. Clin Chem. 2013;59:536–46.CrossRefPubMedGoogle Scholar
  79. 79.
    Lu J, Snider JV, Grenache DG. Establishment of reference intervals for soluble ST2 from a United States population. Clin Chim Acta. 2010;411:1825–6.CrossRefPubMedGoogle Scholar
  80. 80.
    Januzzi JL, Pascual-Figal D, Daniels LB: ST2 testing for chronic heart failure therapy monitoring: the International ST2 Consensus Panel. American Journal of Cardiology [Internet] Elsevier Inc., 2015; 115:70B–75B. Available from: doi:  https://doi.org/10.1016/j.amjcard.2015.01.044
  81. 81.
    Anand IS, Rector TS, Kuskowski M, Snider J, Cohn JN. Prognostic value of soluble ST2 in the Valsartan Heart Failure Trial. Circulation: Heart Failure. 2014;7:418–26.Google Scholar
  82. 82.
    Christ-Crain M, Stolz D, Bingisser R, Müller C, Miedinger D, Huber PR, Zimmerli W, Harbarth S, Tamm M, Müller B: Procalcitonin guidance of antibiotic therapy in community-acquired pneumonia. American Journal of Respiratory and Critical Care Medicine American Thoracic Society, 2006; 174:84–93.Google Scholar
  83. 83.
    Maisel A, Neath SX, Landsberg J, Mueller C, Nowak RM, Peacock WF, et al. Use of procalcitonin for the diagnosis of pneumonia in patients presenting with a chief complaint of dyspnoea: results from the BACH (Biomarkers in Acute Heart Failure) trial. Eur J Heart Fail. 2012;14:278–86.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Schuetz P, Kutz A, Grolimund E, et al.: Excluding infection through procalcitonin testing improves outcomes of congestive heart failure patients presenting with acute respiratory symptoms: results from the randomized ProHOSP trial. Int J Cardiol [Internet] Elsevier Ireland Ltd, 2014; 175:464–472. Available from: doi:  https://doi.org/10.1016/j.ijcard.2014.06.022
  85. 85.
    Loncar G, Tscholl V, Tahirovic E, Sekularac N, Marx A, Obradovic D, et al. Should procalcitonin be measured routinely in acute decompensated heart failure? Biomark Med. 2015;9:651–9.CrossRefPubMedGoogle Scholar
  86. 86.
    Fernandez AM, Villanueva MP, Montalvo E, Palau P, Santas E, Carratala A, et al. Procalcitonin predicts long-term mortality in patients with acute heart failure. European Journal of Heart Failure European Journal of Heart Failure. 2014;16:176.Google Scholar
  87. 87.
    Villanueva MP, Mollar A, Palau P, Carratalá A, Núñez E, Santas E, Bodí V, Chorro FJ, Miñana G, Blasco ML, Sanchis J, Núñez J: Procalcitonin and long-term prognosis after an admission for acute heart failure. European Journal of Internal Medicine [Internet] European Federation of Internal Medicine., 2015; 26:42–48. Available from: doi:  https://doi.org/10.1016/j.ejim.2014.12.009
  88. 88.
    Alba GA, Truong QA, Gaggin HK, Gandhi PU, De Berardinis B, Magrini L, et al. Diagnostic and prognostic utility of procalcitonin in patients presenting to the emergency department with dyspnea. Am J Med. 2016;129:96–104.e7.CrossRefPubMedGoogle Scholar
  89. 89.
    Dahaba AA, Rehak PH, List WF. Procalcitonin and C-reactive protein plasma concentrations in nonseptic uremic patients undergoing hemodialysis. Intensive Care Med. 2003;29:579–83.CrossRefPubMedGoogle Scholar
  90. 90.
    Herget-Rosenthal S, Klein T, Marggraf G, Hirsch T, Jakob H-G, Philipp T, et al. Modulation and source of procalcitonin in reduced renal function and renal replacement therapy. Scand J Immunol. 2005;61:180–6.CrossRefPubMedGoogle Scholar
  91. 91.
    Lavín-Gómez BA, Palomar-Fontanet R, Gago-Fraile M, Quintanar-Lartundo JA, Gómez-Palomo E, González-Lamuño D, et al. Inflammation markers, chronic kidney disease, and renal replacement therapy. Advances in peritoneal dialysis Conference on Peritoneal Dialysis. 2011;27:33–7.PubMedGoogle Scholar
  92. 92.
    Herget-Rosenthal S, Marggraf G, Pietruck F, Hüsing J, Strupat M, Philipp T, et al. Procalcitonin for accurate detection of infection in haemodialysis. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association Oxford University Press. 2001;16:975–9.CrossRefGoogle Scholar
  93. 93.
    Mori K-I, Noguchi M, Sumino Y, Sato F, Mimata H. Use of procalcitonin in patients on chronic hemodialysis: procalcitonin is not related with increased serum calcitonin. ISRN Urology. 2012;2012:1–6.CrossRefGoogle Scholar
  94. 94.
    Abbasi A, Corpeleijn E, Postmus D, Gansevoort RT, de Jong PE, Gans ROB, et al. Plasma procalcitonin is associated with obesity, insulin resistance, and the metabolic syndrome. The Journal of Clinical Endocrinology & Metabolism Oxford University Press. 2010;95:E26–31.CrossRefGoogle Scholar
  95. 95.
    Sugihara T, Koda M, Okamoto T, Miyoshi K, Matono T, Oyama K, et al. Serum procalcitonin in patients with acute liver failure. Yonago Acta Medica Tottori University Faculty of Medicine. 2017;60:40–6.Google Scholar
  96. 96.
    Jimeno A, García-Velasco A, del Val O, González-Billalabeitia E, Hernando S, Hernández R, et al. Assessment of procalcitonin as a diagnostic and prognostic marker in patients with solid tumors and febrile neutropenia. Cancer. 2004;100:2462–9.CrossRefPubMedGoogle Scholar
  97. 97.
    Delèvaux I, André M, Colombier M, Albuisson E, Meylheuc F, Bègue R-J, et al. Can procalcitonin measurement help in differentiating between bacterial infection and other kinds of inflammatory processes? Ann Rheum Dis. 2003;62:337–40.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Scirè CA, Cavagna L, Perotti C, Bruschi E, Caporali R, Montecucco C. Diagnostic value of procalcitonin measurement in febrile patients with systemic autoimmune diseases. Clin Exp Rheumatol. 24:123–8.Google Scholar
  99. 99.
    Meisner M, Tschaikowsky K, Hutzler A, Schick C, Schüttler J. Postoperative plasma concentrations of procalcitonin after different types of surgery. Intensive Care Med. 1998;24:680–4.CrossRefPubMedGoogle Scholar
  100. 100.
    Geppert A, Steiner A, Delle-Karth G, Heinz G, Huber K. Usefulness of procalcitonin for diagnosing complicating sepsis in patients with cardiogenic shock. Intensive Care Medicine Springer-Verlag. 2003;29:1384–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Marin Nishimura
    • 1
  • Alison Brann
    • 2
  • Kay-Won Chang
    • 3
  • Alan S Maisel
    • 1
  1. 1.Division of Cardiovascular MedicineUniversity of California, San DiegoLa JollaUSA
  2. 2.Department of MedicineUniversity of California, San DiegoLa JollaUSA
  3. 3.Cedars-Sinai Heart InstituteCedars-Sinai Medical CenterLos AngelesUSA

Personalised recommendations