Cellular Origins of Barrett’s Esophagus: the Search Continues

  • Horace Rhee
  • David H. WangEmail author
Esophagus (J Clarke and N Ahuja, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Esophagus


Purpose of Review

The cellular origins of Barrett’s esophagus remain elusive. In this review, we discuss the potential cellular mechanisms behind squamous to columnar metaplasia as well as the limitations of these proposed mechanisms.

Recent Findings

Several theories have been proposed, including the reprogramming of native squamous cells, repopulation from submucosal glands, contributions from circulating bone marrow-derived cells, and direct extension of gastric cells. Most recent data support an innate progenitor cell unique to the squamocolumnar junction that can expand into metaplastic glands.


Active investigation to clarify each of these potential cells of origin is being pursued, but ultimately each could contribute to the pathogenesis of Barrett’s esophagus depending on the clinical context. Nonetheless, identifying cells of origin is critical to understand the molecular mechanisms behind Barrett’s esophagus and developing strategies to better treat (and possibly prevent) this increasingly significant premalignant disease.


Barrett’s esophagus Metaplasia Cell of origin Squamocolumnar junction 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Simard EP, Ward EM, Siegel R, Jemal A. Cancers with increasing incidence trends in the United States: 1999 through 2008. CA Cancer J Clin. 2012;62(2):118–28. Scholar
  2. 2.
    Pohl H, Sirovich B, Welch HG. Esophageal adenocarcinoma incidence: are we reaching the peak? Cancer Epidemiol Biomark Prev. 2010;19(6):1468–70. Scholar
  3. 3.
    Thrift AP. The epidemic of oesophageal carcinoma: where are we now? Cancer Epidemiol. 2016;41:88–95. Scholar
  4. 4.
    Spechler SJ. Barrett esophagus and risk of esophageal cancer: a clinical review. JAMA. 2013;310(6):627–36. Scholar
  5. 5.
    Shaheen NJ, Sharma P, Overholt BF, Wolfsen HC, Sampliner RE, Wang KK, et al. Radiofrequency ablation in Barrett’s esophagus with dysplasia. N Engl J Med. 2009;360(22):2277–88.CrossRefGoogle Scholar
  6. 6.
    Stairs DB, Nakagawa H, Klein-Szanto A, Mitchell SD, Silberg DG, Tobias JW, et al. Cdx1 and c-Myc foster the initiation of transdifferentiation of the normal esophageal squamous epithelium toward Barrett’s esophagus. PLoS One. 2008;3(10):e3534. Scholar
  7. 7.
    Gillen P, Keeling P, Byrne PJ, West AB, Hennessy TP. Experimental columnar metaplasia in the canine oesophagus. Br J Surg. 1988;75(2):113–5.CrossRefGoogle Scholar
  8. 8.
    • Wang X, Ouyang H, Yamamoto Y, Kumar PA, Wei TS, Dagher R, et al. Residual embryonic cells as precursors of a Barrett’s-like metaplasia. Cell. 2011;145(7):1023–35. This study identified residual embryonic cells at the squamocolumnar junction as a potential source of the Barrett’s esophagus cell of origin. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    • Quante M, Bhagat G, Abrams JA, Marache F, Good P, Lee MD, et al. Bile acid and inflammation activate gastric cardia stem cells in a mouse model of Barrett-like metaplasia. Cancer Cell. 2012;21(1):36–51. This study demonstrated that proximal gastric cardiac glands in the mouse can give rise to Barrett’s like metaplasia and associated adenocarcinoma. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    • Jiang M, Li H, Zhang Y, Yang Y, Lu R, Liu K, et al. Transitional basal cells at the squamous-columnar junction generate Barrett’s oesophagus. Nature. 2017;550(7677):529–33. This study identified basal transitional epithelium at the squamocolumnar junction as a potential soure of the Barrett’s esophagus cell of origin. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sarosi G, Brown G, Jaiswal K, Feagins LA, Lee E, Crook TW, et al. Bone marrow progenitor cells contribute to esophageal regeneration and metaplasia in a rat model of Barrett’s esophagus. Dis Esophagus. 2008;21(1):43–50. Scholar
  12. 12.
    Wang DH, Souza RF. Transcommitment: paving the way to Barrett’s metaplasia. Adv Exp Med Biol. 2016;908:183–212. Scholar
  13. 13.
    Levrat M, Lambert R, Kirshbaum G. Esophagitis produced by reflux of duodenal contents in rats. Am J Dig Dis. 1962;7:564–73.CrossRefGoogle Scholar
  14. 14.
    Lord RV, Wickramasinghe K, Johansson JJ, Demeester SR, Brabender J, Demeester TR. Cardiac mucosa in the remnant esophagus after esophagectomy is an acquired epithelium with Barrett’s-like features. Surgery. 2004;136(3):633–40. Scholar
  15. 15.
    Oberg S, Johansson J, Wenner J, Walther B. Metaplastic columnar mucosa in the cervical esophagus after esophagectomy. Ann Surg. 2002;235(3):338–45.CrossRefGoogle Scholar
  16. 16.
    Shields HM, Zwas F, Antonioli DA, Doos WG, Kim S, Spechler SJ. Detection by scanning electron microscopy of a distinctive esophageal surface cell at the junction of squamous and Barrett’s epithelium. Dig Dis Sci. 1993;38(1):97–108.CrossRefGoogle Scholar
  17. 17.
    Sawhney RA, Shields HM, Allan CH, Boch JA, Trier JS, Antonioli DA. Morphological characterization of the squamocolumnar junction of the esophagus in patients with and without Barrett’s epithelium. Dig Dis Sci. 1996;41(6):1088–98.CrossRefGoogle Scholar
  18. 18.
    Boch JA, Shields HM, Antonioli DA, Zwas F, Sawhney RA, Trier JS. Distribution of cytokeratin markers in Barrett’s specialized columnar epithelium. Gastroenterology. 1997;112(3):760–5.CrossRefGoogle Scholar
  19. 19.
    Yu WY, Slack JM, Tosh D. Conversion of columnar to stratified squamous epithelium in the developing mouse oesophagus. Dev Biol. 2005;284(1):157–70.CrossRefGoogle Scholar
  20. 20.
    Shields HM, Rosenberg SJ, Zwas FR, Ransil BJ, Lembo AJ, Odze R. Prospective evaluation of multilayered epithelium in Barrett’s esophagus. Am J Gastroenterol. 2001;96(12):3268–73. Scholar
  21. 21.
    Chen X, Qin R, Liu B, Ma Y, Su Y, Yang CS, et al. Multilayered epithelium in a rat model and human Barrett’s esophagus: similar expression patterns of transcription factors and differentiation markers. BMC Gastroenterol. 2008;8:1.CrossRefGoogle Scholar
  22. 22.
    Chen X, Yang G, Ding WY, Bondoc F, Curtis SK, Yang CS. An esophagogastroduodenal anastomosis model for esophageal adenocarcinogenesis in rats and enhancement by iron overload. Carcinogenesis. 1999;20(9):1801–8.CrossRefGoogle Scholar
  23. 23.
    Pham TH, Genta RM, Spechler SJ, Souza RF, Wang DH. Development and characterization of a surgical mouse model of reflux esophagitis and Barrett’s esophagus. J Gastrointest Surg. 2014;18(2):234–40; discussion 40-1. Scholar
  24. 24.
    Daniely Y, Liao G, Dixon D, Linnoila RI, Lori A, Randell SH, et al. Critical role of p63 in the development of a normal esophageal and tracheobronchial epithelium. Am J Physiol Cell Physiol. 2004;287(1):C171–81.CrossRefGoogle Scholar
  25. 25.
    Lee Y, Urbanska AM, Hayakawa Y, Wang H, Au AS, Luna AM, et al. Gastrin stimulates a cholecystokinin-2-receptor-expressing cardia progenitor cell and promotes progression of Barrett’s-like esophagus. Oncotarget. 2017;8(1):203–14. Scholar
  26. 26.
    Milano F, van Baal JW, Buttar NS, Rygiel AM, de Kort F, DeMars CJ, et al. Bone morphogenetic protein 4 expressed in esophagitis induces a columnar phenotype in esophageal squamous cells. Gastroenterology. 2007;132(7):2412–21.CrossRefGoogle Scholar
  27. 27.
    Wang DH, Clemons NJ, Miyashita T, Dupuy AJ, Zhang W, Szczepny A, et al. Aberrant epithelial-mesenchymal hedgehog signaling characterizes Barrett’s metaplasia. Gastroenterology. 2010;138(5):1810–22. Scholar
  28. 28.
    Mari L, Milano F, Parikh K, Straub D, Everts V, Hoeben KK, et al. A pSMAD/CDX2 complex is essential for the intestinalization of epithelial metaplasia. Cell Rep. 2014;7(4):1197–210. Scholar
  29. 29.
    • von Furstenberg RJ, Li J, Stolarchuk C, Feder R, Campbell A, Kruger L, et al. Porcine esophageal submucosal gland culture model shows capacity for proliferation and differentiation. Cell Mol Gastroenterol Hepatol. 2017;4(3):385–404. This study demonstrated that esophageal submucosal gland epithelia in pigs can give rise to both squamous and columnar cells following injury. CrossRefGoogle Scholar
  30. 30.
    Coad RA, Woodman AC, Warner PJ, Barr H, Wright NA, Shepherd NA. On the histogenesis of Barrett’s oesophagus and its associated squamous islands: a three-dimensional study of their morphological relationship with native oesophageal gland ducts. J Pathol. 2005;206(4):388–94. Scholar
  31. 31.
    Leedham SJ, Preston SL, McDonald SA, Elia G, Bhandari P, Poller D, et al. Individual crypt genetic heterogeneity and the origin of metaplastic glandular epithelium in human Barrett’s oesophagus. Gut. 2008;57(8):1041–8. Scholar
  32. 32.
    Hutchinson L, Stenstrom B, Chen D, Piperdi B, Levey S, Lyle S, et al. Human Barrett’s adenocarcinoma of the esophagus, associated myofibroblasts, and endothelium can arise from bone marrow-derived cells after allogeneic stem cell transplant. Stem Cells Dev. 2011;20(1):11–7. Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Division of Gastroenterology and HepatologyStanford University School of MedicineStanfordUSA
  2. 2.Division of Hematology and Oncology, Esophageal Diseases Center, Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasUSA
  3. 3.Medical ServiceVA North Texas Health Care SystemDallasUSA

Personalised recommendations