Advertisement

Current Diabetes Reports

, 19:109 | Cite as

Dietary Fat and the Genetic Risk of Type 2 Diabetes

  • Germán D. Carrasquilla
  • Hermina Jakupović
  • Tuomas O. KilpeläinenEmail author
Genetics (AP Morris, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Genetics

Abstract

Purpose of Review

We review recent evidence of the relationship between dietary fat intake and risk of type 2 diabetes (T2D), the role of epigenetic alterations as a mediator of this relationship, and the impact of gene-dietary fat interactions in the development of the disease. Based on the observations made, we will discuss whether there is evidence to support genetic personalization of fat intake recommendations in T2D prevention.

Recent Findings

Strong evidence suggests that polyunsaturated fatty acids (PUFA) have a protective effect on T2D risk, whereas the roles of saturated and monounsaturated fatty acids (SFA and MUFA) remain unclear. Diets enriched with PUFA vs SFA lead to distinct epigenetic alterations that may mediate their effects on T2D risk by changing gene function. However, it is not currently known which of the epigenetic alterations, if any, are causal for T2D. The current literature shows no replicated evidence of genetic variants modifying the effect of dietary fat intake on T2D risk.

Summary

There is consistent evidence of a protective role of PUFA in T2D prevention. No evidence supports genetic personalization of dietary recommendations in T2D prevention.

Keywords

Dietary fat Fatty acid composition Gene Genetic risk Epigenetics Type 2 diabetes 

Notes

Compliance with Ethical Standards

Conflict of Interest

Germán D. Carrasquilla and Hermina Jakupović declare that they have no conflict of interest. Tuomas O. Kilpeläinen reports grants from Novo Nordisk Foundation.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386(9995):743–800.PubMedCentralCrossRefGoogle Scholar
  2. 2.
    Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH. The disease burden associated with overweight and obesity. JAMA. 1999;282(16):1523–9.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS, et al. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA. 2003;289(1):76–9.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    de Souza RJ, Mente A, Maroleanu A, Cozma AI, Ha V, Kishibe T, et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ. 2015;351:h3978.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Nordic Council of Ministers. Nordic nutrition recommendations 2012: integrating nutrition and physical activity. Copenhagen: Narayana Press; 2014.CrossRefGoogle Scholar
  6. 6.
    Harcombe Z. Dietary fat guidelines have no evidence base: where next for public health nutritional advice? British Journal of Sports Medicine. 2017;51(10):769–74.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Hebert JR, Ma Y, Clemow L, Ockene IS, Saperia G, Stanek EJ 3rd, et al. Gender differences in social desirability and social approval bias in dietary self-report. American Journal of Epidemiology. 1997;146(12):1046–55.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Zock PL, Mensink RP, Harryvan J, de Vries JH, Katan MB. Fatty acids in serum cholesteryl esters as quantitative biomarkers of dietary intake in humans. American Journal of Epidemiology. 1997;145(12):1114–22.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Aro A. Fatty acid composition of serum lipids: is this marker of fat intake still relevant for identifying metabolic and cardiovascular disorders? Nutrition, Metabolism, and Cardiovascular Diseases. 2003;13(5):253–5.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    •• Merino J, Guasch-Ferre M, Ellervik C, Dashti HS, Sharp SJ, Wu P, et al. Quality of dietary fat and genetic risk of type 2 diabetes: individual participant data meta-analysis. BMJ. 2019;366:I4292. Findings from this individual participant data meta-analysis suggest that genetic burden of T2D and quality of dietary fat are each associated with the incidence of T2D, but there is no interaction between them. Google Scholar
  11. 11.
    Alhazmi A, Stojanovski E, McEvoy M, Garg ML. Macronutrient intakes and development of type 2 diabetes: a systematic review and meta-analysis of cohort studies. Journal of the American College of Nutrition. 2012;31(4):243–58.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Micha R, Mozaffarian D. Saturated fat and cardiometabolic risk factors, coronary heart disease, stroke, and diabetes: a fresh look at the evidence. Lipids. 2010;45(10):893–905.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Tinker LF, Bonds DE, Margolis KL, Manson JE, Howard BV, Larson J, et al. Low-fat dietary pattern and risk of treated diabetes mellitus in postmenopausal women: the Women’s Health Initiative randomized controlled dietary modification trial. Archives of Internal Medicine. 2008;168(14):1500–11.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Schwab U, Lauritzen L, Tholstrup T, Haldorssoni T, Riserus U, Uusitupa M, et al. Effect of the amount and type of dietary fat on cardiometabolic risk factors and risk of developing type 2 diabetes, cardiovascular diseases, and cancer: a systematic review. Food & Nutrition Research. 2014;58:25145.CrossRefGoogle Scholar
  15. 15.
    Imamura F, Micha R, Wu JH, de Oliveira Otto MC, Otite FO, Abioye AI, et al. Effects of saturated fat, polyunsaturated fat, monounsaturated fat, and carbohydrate on glucose-insulin homeostasis: a systematic review and meta-analysis of tandomised controlled feeding trials. PLOS Medicine. 2016;13(7):e1002087.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    • Forouhi NG, Imamura F, Sharp SJ, Koulman A, Schulze MB, Zheng J, et al. Association of plasma phospholipid n-3 and n-6 polyunsaturated fatty acids with type 2 diabetes: the EPIC-InterAct case-cohort study. PLOS Medicine. 2016;13(7):e1002094. Findings from this meta-analysis study suggest that higher circulating levels of the plant-derived omega-6 linoleic acid and omega-3 alpha linolenic acid are associated with lower T2D risk, whereas no protective effect is found for other PUFA. PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Wu JHY, Marklund M, Imamura F, Tintle N, Ardisson Korat AV, de Goede J, et al. Omega-6 fatty acid biomarkers and incident type 2 diabetes: pooled analysis of individual-level data for 39 740 adults from 20 prospective cohort studies. The Lancet Diabetes & Endocrinology. 2017;5(12):965–74.CrossRefGoogle Scholar
  18. 18.
    Vessby B, Uusitupa M, Hermansen K, Riccardi G, Rivellese AA, Tapsell LC, et al. Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: the KANWU Study. Diabetologia. 2001;44(3):312–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Perez-Jimenez F, Lopez-Miranda J, Pinillos MD, Gomez P, Paz-Rojas E, Montilla P, et al. A Mediterranean and a high-carbohydrate diet improve glucose metabolism in healthy young persons. Diabetologia. 2001;44(11):2038–43.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Paniagua JA, Gallego de la Sacristana A, Romero I, Vidal-Puig A, Latre JM, Sanchez E, et al. Monounsaturated fat-rich diet prevents central body fat distribution and decreases postprandial adiponectin expression induced by a carbohydrate-rich diet in insulin-resistant subjects. Diabetes Care. 2007;30(7):1717–23.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Forouhi NG, Koulman A, Sharp SJ, Imamura F, Kroger J, Schulze MB, et al. Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: the EPIC-InterAct case-cohort study. The Lancet Diabetes & Endocrinology. 2014;2(10):810–8.CrossRefGoogle Scholar
  22. 22.
    • Imamura F, Fretts A, Marklund M, Ardisson Korat AV, Yang WS, Lankinen M, et al. Fatty acid biomarkers of dairy fat consumption and incidence of type 2 diabetes: a pooled analysis of prospective cohort studies. PLOS Medicine. 2018;15(10):e1002670. Findings from this meta-analysis study suggest that higher circulating concentrations of odd-chain saturated fats and natural ruminant trans-fats, biomarkers of dairy fat intake, are associated with lower risk of T2D.Google Scholar
  23. 23.
    Fretts AM, Imamura F, Marklund M, Micha R, Wu JHY, Murphy RA, et al. Associations of circulating very-long-chain saturated fatty acids and incident type 2 diabetes: a pooled analysis of prospective cohort studies. The American Journal of Clinical Nutrition. 2019;109(4):1216–23.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Gijsbers L, Ding EL, Malik VS, de Goede J, Geleijnse JM, Soedamah-Muthu SS. Consumption of dairy foods and diabetes incidence: a dose-response meta-analysis of observational studies. The American Journal of Clinical Nutrition. 2016;103(4):1111–24.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Benatar JR, Sidhu K, Stewart RA. Effects of high and low fat dairy food on cardio-metabolic risk factors: a meta-analysis of randomized studies. PLOS One. 2013;8(10):e76480.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Yang Q, Lin SL, Au Yeung SL, Kwok MK, Xu L, Leung GM, et al. Genetically predicted milk consumption and bone health, ischemic heart disease and type 2 diabetes: a Mendelian randomization study. European Journal of Clinical Nutrition. 2017;71(8):1008–12.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Bergholdt HK, Nordestgaard BG, Ellervik C. Milk intake is not associated with low risk of diabetes or overweight-obesity: a mendelian randomization study in 97,811 Danish individuals. The American Journal of Clinical Nutrition. 2015;102(2):487–96.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Mendelian Randomization of Dairy Consumption Working Group. Dairy intake and body composition and cardiometabolic traits among adults: mendelian randomization analysis of 182041 individuals from 18 studies. Clinical Chemistry. 2019;65(6):751–60.CrossRefGoogle Scholar
  29. 29.
    Ling C, Ronn T. Epigenetics in human obesity and type 2 diabetes. Cell Metabolism. 2019;29(5):1028–44.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Malmgren S, Spegel P, Danielsson AP, Nagorny CL, Andersson LE, Nitert MD, et al. Coordinate changes in histone modifications, mRNA levels, and metabolite profiles in clonal INS-1 832/13 beta-cells accompany functional adaptations to lipotoxicity. The Journal of Biological Chemistry. 2013;288(17):11973–87.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Hall E, Volkov P, Dayeh T, Bacos K, Ronn T, Nitert MD, et al. Effects of palmitate on genome-wide mRNA expression and DNA methylation patterns in human pancreatic islets. BMC Medicine. 2014;12:103.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Jacobsen SC, Brons C, Bork-Jensen J, Ribel-Madsen R, Yang B, Lara E, et al. Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men. Diabetologia. 2012;55(12):3341–9.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Jacobsen SC, Gillberg L, Bork-Jensen J, Ribel-Madsen R, Lara E, Calvanese V, et al. Young men with low birthweight exhibit decreased plasticity of genome-wide muscle DNA methylation by high-fat overfeeding. Diabetologia. 2014;57(6):1154–8.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Perfilyev A, Dahlman I, Gillberg L, Rosqvist F, Iggman D, Volkov P, et al. Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial. The American Journal of Clinical Nutrition. 2017;105(4):991–1000.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Voisin S, Almen MS, Moschonis G, Chrousos GP, Manios Y, Schioth HB. Dietary fat quality impacts genome-wide DNA methylation patterns in a cross-sectional study of Greek preadolescents. European Journal of Human Genetics. 2015;23(5):654–62.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Ivarsdottir EV, Steinthorsdottir V, Daneshpour MS, Thorleifsson G, Sulem P, Holm H, et al. Effect of sequence variants on variance in glucose levels predicts type 2 diabetes risk and accounts for heritability. Nature Genetics. 2017;49(9):1398–402.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Willemsen G, Ward KJ, Bell CG, Christensen K, Bowden J, Dalgard C, et al. The concordance and heritability of type 2 diabetes in 34,166 twin pairs from international twin registers: The Discordant Twin (DISCOTWIN) Consortium. Twin Research and Human Henetics. 2015;18(6):762–71.CrossRefGoogle Scholar
  38. 38.
    Almgren P, Lehtovirta M, Isomaa B, Sarelin L, Taskinen MR, Lyssenko V, et al. Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study. Diabetologia. 2011;54(11):2811–9.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Meigs JB, Cupples LA, Wilson PW. Parental transmission of type 2 diabetes: the Framingham Offspring Study. Diabetes. 2000;49(12):2201–7.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Fuchsberger C, Flannick J, Teslovich TM, Mahajan A, Agarwala V, Gaulton KJ, et al. The genetic architecture of type 2 diabetes. Nature. 2016;536(7614):41–7.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Flannick J, Mercader JM, Fuchsberger C, Udler MS, Mahajan A, Wessel J, et al. Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 controls. Nature. 2019;570(7759):71–6.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Chen J, Sun M, Adeyemo A, Pirie F, Carstensen T, Pomilla C, et al. Genome-wide association study of type 2 diabetes in Africa. Diabetologia. 2019;62(7):1204–11.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nature Genetics. 2018;50(11):1505–13.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Mahajan A, Go MJ, Zhang W, Below JE, Gaulton KJ, Ferreira T, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nature Genetics. 2014;46(3):234–44.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Scott RA, Scott LJ, Magi R, Marullo L, Gaulton KJ, Kaakinen M, et al. An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes. 2017;66(11):2888–902.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Mahajan A, Wessel J, Willems SM, Zhao W, Robertson NR, Chu AY, et al. Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nature Genetics. 2018;50(4):559–71.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Li SX, Imamura F, Ye Z, Schulze MB, Zheng JS, Ardanaz E, et al. Interaction between genes and macronutrient intake on the risk of developing type 2 diabetes: systematic review and findings from European Prospective Investigation into Cancer (EPIC)-InterAct. The American Journal of Clinical Nutrition. 2017;106(1):263–75.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Franks PW, Pearson E, Florez JC. Gene-environment and gene-treatment interactions in type 2 diabetes: progress, pitfalls, and prospects. Diabetes Care. 2013;36(5):1413–21.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Moore AF, Jablonski KA, McAteer JB, Saxena R, Pollin TI, Franks PW, et al. Extension of type 2 diabetes genome-wide association scan results in the diabetes prevention program. Diabetes. 2008;57(9):2503–10.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. The New England Journal of Medicine. 2001;344(18):1343–50.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Germán D. Carrasquilla
    • 1
  • Hermina Jakupović
    • 1
  • Tuomas O. Kilpeläinen
    • 1
    Email author
  1. 1.Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations