Advertisement

Current Diabetes Reports

, 19:95 | Cite as

Imaging and Biomarkers in Diabetic Macular Edema and Diabetic Retinopathy

  • Changyow C. Kwan
  • Amani A. FawziEmail author
Microvascular Complications—Retinopathy (DL Chao and G Yiu, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Microvascular Complications—Retinopathy

Abstract

Purpose of Review

Diabetic retinopathy (DR) is the leading cause of acquired vision loss in adults across the globe. Early identification and treatment of patients with DR is paramount for vision preservation. The aim of this review paper is to outline current and new imaging techniques and biomarkers that are valuable for clinical diagnosis and management of DR.

Recent Findings

Ultrawide field imaging and automated deep learning algorithms are recent advancements on traditional fundus photography and fluorescein angiography. Optical coherence tomography (OCT) and OCT angiography are techniques that image retinal anatomy and vasculature and OCT is routinely used to monitor response to treatment. Many circulating, vitreous, and genetic biomarkers have been studied to facilitate disease detection and development of new treatments.

Summary

Recent advancements in retinal imaging and identification of promising new biomarkers for DR have the potential to increase detection, risk stratification, and treatment for patients with DR.

Keywords

Diabetic retinopathy Diabetic macular edema Biomarkers Retinal imaging 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.Google Scholar
  2. 2.
    • Ting DSW, Cheung GCM, Wong TY. Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review. Clin Exp Ophthalmol. 2016;44(4):260–77. Provides updated DR epidemiology and risk factors and current guidelines. PubMedGoogle Scholar
  3. 3.
    He F, Xia X, Wu X, Yu X, Huang F. Diabetic retinopathy in predicting diabetic nephropathy in patients with type 2 diabetes and renal disease: a meta-analysis: Diabetologia. 2013;56(3):457-66.  https://doi.org/10.1007/s00125-012-2796-6.PubMedGoogle Scholar
  4. 4.
    Kawasaki R, Tanaka S, Tanaka S, Abe S, Sone H, Yokote K, et al. Risk of cardiovascular diseases is increased even with mild diabetic retinopathy: the Japan Diabetes Complications Study. Ophthalmology. 2013;120(3):574–82.PubMedGoogle Scholar
  5. 5.
    Ding J, Wong TY. Current epidemiology of diabetic retinopathy and diabetic macular edema. Curr Diab Rep. 2012;12(4):346–54.PubMedGoogle Scholar
  6. 6.
    Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556–64.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Group ETDRSR. Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie House classification: ETDRS report number 10. Ophthalmology. 1991;98(5):786–806.Google Scholar
  9. 9.
    Wilkinson C, Ferris III FL, Klein RE, Lee PP, Agardh CD, Davis M et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales 2003;110(9):1677–82.Google Scholar
  10. 10.
    Williams GA, Scott IU, Haller JA, Maguire AM, Marcus D, McDonald HR. Single-field fundus photography for diabetic retinopathy screening: a report by the American Academy of Ophthalmology. Ophthalmology. 2004;111(5):1055–62.PubMedGoogle Scholar
  11. 11.
    Shi L, Wu H, Dong J, Jiang K, Lu X, Shi J. Telemedicine for detecting diabetic retinopathy: a systematic review and meta-analysis. Br J Ophthalmol. 2015;99(6):823–31.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Mansberger SL, Sheppler C, Barker G, Gardiner SK, Demirel S, Wooten K, et al. Long-term comparative effectiveness of telemedicine in providing diabetic retinopathy screening examinations: a randomized clinical trial. JAMA Ophthalmol. 2015;133(5):518–25.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Nguyen HV, Tan GSW, Tapp RJ, Mital S, Ting DSW, Wong HT, et al. Cost-effectiveness of a national telemedicine diabetic retinopathy screening program in Singapore. Ophthalmology. 2016;123(12):2571–80.PubMedGoogle Scholar
  14. 14.
    Philip S, Fleming AD, Goatman KA, Fonseca S, Mcnamee P, Scotland GS, et al. The efficacy of automated “disease/no disease” grading for diabetic retinopathy in a systematic screening programme. Br J Ophthalmol. 2007;91(11):1512–7.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama. 2016;316(22):2402–10.PubMedGoogle Scholar
  16. 16.
    • Tufail A, Rudisill C, Egan C, Kapetanakis VV, Salas-Vega S, Owen CG, et al. Automated diabetic retinopathy image assessment software: diagnostic accuracy and cost-effectiveness compared with human graders. Ophthalmology. 2017;124(3):343–51. Identifies automated algorithms for DR screening capable of high diagnostic accuracy and potenital for cost savings. PubMedGoogle Scholar
  17. 17.
    Rajalakshmi R, Subashini R, Anjana RM, Mohan V. Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence. Eye. 2018;32(6):1138–44.PubMedPubMedCentralGoogle Scholar
  18. 18.
    • Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. Digit Med. 2018;1(1).  https://doi.org/10.1038/s41746-018-0040-6. Landmark study that lead to FDA approval of the first artificial intelligence system for DR screening.
  19. 19.
    Aiello LP, Odia I, Glassman AR, Melia M, Jampol LM, Bressler NM, et al. Comparison of Early Treatment Diabetic Retinopathy Study standard 7-field imaging with ultrawide-field imaging for determining severity of diabetic retinopathy. JAMA Ophthalmol. 2019;137(1):65–73.PubMedGoogle Scholar
  20. 20.
    Silva PS, Cavallerano JD, Tolls D, Omar A, Thakore K, Patel B, et al. Potential efficiency benefits of nonmydriatic ultrawide field retinal imaging in an ocular telehealth diabetic retinopathy program. Diabetes Care. 2014;37(1):50–5.PubMedGoogle Scholar
  21. 21.
    Falavarjani KG, Wang K, Khadamy J, Sadda SR. Ultra-wide-field imaging in diabetic retinopathy; an overview. J Curre Ophthalmol. 2016;28(2):57–60.Google Scholar
  22. 22.
    Silva PS, Cavallerano JD, Haddad NMN, Kwak H, Dyer KH, Omar AF, et al. Peripheral lesions identified on ultrawide field imaging predict increased risk of diabetic retinopathy progression over 4 years. Ophthalmology. 2015;122(5):949–56.PubMedGoogle Scholar
  23. 23.
    Cole ED, Novais EA, Louzada RN, Waheed NK. Contemporary retinal imaging techniques in diabetic retinopathy: a review. Clin Exp Ophthalmol. 2016;44(4):289–99.PubMedGoogle Scholar
  24. 24.
    Wessel MM, Aaker GD, Parlitsis G, Cho M, D'Amico DJ, Kiss S. Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy. Retina (Philadelphia, Pa). 2012;32(4):785–91.  https://doi.org/10.1097/IAE.0b013e3182278b64.CrossRefGoogle Scholar
  25. 25.
    Patel RD, Messner LV, Teitelbaum B, Michel KA, Hariprasad SM. Characterization of ischemic index using ultra-widefield fluorescein angiography in patients with focal and diffuse recalcitrant diabetic macular edema. Am J Ophthalmol. 2013;155(6):1038–44.e2.  https://doi.org/10.1016/j.ajo.2013.01.007.CrossRefPubMedGoogle Scholar
  26. 26.
    Rabbani H, Allingham MJ, Mettu PS, Cousins SW, Farsiu S. Fully automatic segmentation of fluorescein leakage in subjects with diabetic macular edema. Invest Ophthalmol Vis Sci. 2015;56(3):1482–92.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Kwiterovich KA, Maguire MG, Murphy RP, Schachat AP, Bressler NM, Bressler SB, et al. Frequency of adverse systemic reactions after fluorescein angiography: results of a prospective study. Ophthalmology. 1991;98(7):1139–42.PubMedGoogle Scholar
  28. 28.
    Kornblau IS, El-Annan JF. Adverse reactions to fluorescein angiography: a comprehensive review of the literature. Surv Ophthalmol. 2019;64:679–93.PubMedGoogle Scholar
  29. 29.
    Lee J, Rosen R. Optical coherence tomography angiography in diabetes. Curr Diab Rep. 2016;16(12):123.PubMedGoogle Scholar
  30. 30.
    Kang SW, Park CY, Ham D-I. The correlation between fluorescein angiographic and optical coherence tomographic features in clinically significant diabetic macular edema. Am J Ophthalmol. 2004;137(2):313–22.PubMedGoogle Scholar
  31. 31.
    Byeon SH, Chu YK, Hong YT, Kim M, Kang HM, Kwon OW. New insights into the pathoanatomy of diabetic macular edema: angiographic patterns and optical coherence tomography. Retina (Philadelphia, Pa). 2012;32(6):1087–99.Google Scholar
  32. 32.
    Koleva-Georgieva D, Sivkova N. Types of diabetic macular edema assessed by optical coherence tomography. Folia Med. 2008;50(3):30–8.Google Scholar
  33. 33.
    Sun JK, Lin MM, Lammer J, Prager S, Sarangi R, Silva PS, et al. Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema. JAMA Ophthalmol. 2014;132(11):1309–16.PubMedGoogle Scholar
  34. 34.
    Sun JK, Radwan SH, Soliman AZ, Lammer J, Lin MM, Prager SG, et al. Neural retinal disorganization as a robust marker of visual acuity in current and resolved diabetic macular edema. Diabetes. 2015;64(7):2560–70.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Laviers H, Zambarakji H. Enhanced depth imaging-OCT of the choroid: a review of the current literature. Graefes Arch Clin Exp Ophthalmol. 2014;252(12):1871–83.PubMedGoogle Scholar
  36. 36.
    Kim JT, Lee DH, Joe SG, Kim J-G, Yoon YH. Changes in choroidal thickness in relation to the severity of retinopathy and macular edema in type 2 diabetic patients. Invest Ophthalmol Vis Sci. 2013;54(5):3378–84.PubMedGoogle Scholar
  37. 37.
    Vujosevic S, Martini F, Cavarzeran F, Pilotto E, Midena E. Macular and peripapillary choroidal thickness in diabetic patients. Retina (Philadelphia, Pa). 2012;32(9):1781–90.Google Scholar
  38. 38.
    Massin P, Bandello F, Garweg JG, Hansen LL, Harding SP, Larsen M, et al. Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase II study. Diabetes Care. 2010;33(11):2399–405.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Mitchell P, Bandello F, Schmidt-Erfurth U, Lang GE, Massin P, Schlingemann RO, et al. The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology. 2011;118(4):615–25.PubMedGoogle Scholar
  40. 40.
    Hwang TS, Jia Y, Gao SS, Bailey ST, Lauer AK, Flaxel CJ, et al. Optical coherence tomography angiography features of diabetic retinopathy. Retina (Philadelphia, Pa). 2015;35(11):2371.Google Scholar
  41. 41.
    • Park JJ, Soetikno BT, Fawzi AA. Characterization of the middle capillary plexus using optical coherence tomography angiography in healthy and diabetic eyes. Retina (Philadelphia, Pa). 2016;36(11):2039 Demontrates changes in the middle capillary plexus in DR that have not been previously identified. Google Scholar
  42. 42.
    Onishi AC, Nesper PL, Roberts PK, Moharram GA, Chai H, Liu L, et al. Importance of considering the middle capillary plexus on OCT angiography in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2018;59(5):2167–76.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Lee J, Moon BG, Cho AR, Yoon YH. Optical coherence tomography angiography of DME and its association with anti-VEGF treatment response. Ophthalmology. 2016;123(11):2368–75.PubMedGoogle Scholar
  44. 44.
    Talisa E, Chin AT, Bonini Filho MA, Adhi M, Branchini L, Salz DA, et al. Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography. Retina (Philadelphia, Pa). 2015;35(11):2364–70.Google Scholar
  45. 45.
    Alibhai AY, Moult EM, Shahzad R, Rebhun CB, Moreira-Neto C, McGowan M, et al. Quantifying microvascular changes using OCT angiography in diabetic eyes without clinical evidence of retinopathy. Ophthalmol Retina. 2018;2(5):418–27.Google Scholar
  46. 46.
    Ashraf M, Nesper PL, Jampol LM, Yu F, Fawzi AA. Statistical model of optical coherence tomography angiography parameters that correlate with severity of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2018;59(10):4292–8.PubMedPubMedCentralGoogle Scholar
  47. 47.
    • Nesper PL, Roberts PK, Onishi AC, Chai H, Liu L, Jampol LM, et al. Quantifying microvascular abnormalities with increasing severity of diabetic retinopathy using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2017;58(6):BIO307–BIO15. Identifies correlation between OCTA parameters in each capillary plexuses with severity of DR. PubMedPubMedCentralGoogle Scholar
  48. 48.
    Kim AY, Chu Z, Shahidzadeh A, Wang RK, Puliafito CA, Kashani AH. Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(9):OCT362–OCT70.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Durbin MK, An L, Shemonski ND, Soares M, Santos T, Lopes M, et al. Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. JAMA Ophthalmol. 2017;135(4):370–6.  https://doi.org/10.1001/jamaophthalmol.2017.0080.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Krawitz BD, Mo S, Geyman LS, Agemy SA, Scripsema NK, Garcia PM, et al. Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography angiography. Vis Res. 2017;139:177–86.PubMedGoogle Scholar
  51. 51.
    Fawzi AA. Consensus on optical coherence tomographic angiography nomenclature: do we need to develop and learn a new language? JAMA Ophthalmol. 2017;135(4):377–8.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Li X-X, Wu W, Zhou H, Deng J-J, Zhao M-Y, Qian T-W, et al. A quantitative comparison of five optical coherence tomography angiography systems in clinical performance. Int J Ophthalmol. 2018;11(11):1784.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Munk MR, Giannakaki-Zimmermann H, Berger L, Huf W, Ebneter A, Wolf S, et al. OCT-angiography: a qualitative and quantitative comparison of 4 OCT-A devices. PLoS One. 2017;12(5):e0177059.PubMedPubMedCentralGoogle Scholar
  54. 54.
    De Carlo TE, Romano A, Waheed NK, Duker JS. A review of optical coherence tomography angiography (OCTA). Int J Retina Vitreous. 2015;1(1).  https://doi.org/10.1186/s40942-015-0005-8.
  55. 55.
    Spaide RF, Fujimoto JG, Waheed NK. Image artifacts in optical coherence angiography. Retina (Philadelphia, Pa). 2015;35(11):2163.Google Scholar
  56. 56.
    Enders C, Lang GE, Dreyhaupt J, Loidl M, Lang GK, Werner JU. Quantity and quality of image artifacts in optical coherence tomography angiography. PLoS One. 2019;14(1):e0210505.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Zhang M, Hwang TS, Campbell JP, Bailey ST, Wilson DJ, Huang D, et al. Projection-resolved optical coherence tomographic angiography. Biomed Opt Express. 2016;7(3):816–28.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Group DR. Diabetes control and complications trial (DCCT): update. Diabetes Care. 1990;13(4):427–33.Google Scholar
  59. 59.
    Stratton I, Kohner E, Aldington S, Turner R, Holman R, Manley S, et al. UKPDS 50: risk factors for incidence and progression of retinopathy in type II diabetes over 6 years from diagnosis. Diabetologia. 2001;44(2):156–63.PubMedGoogle Scholar
  60. 60.
    Chew EY, Davis MD, Danis RP, Lovato JF, Perdue LH, Greven C, et al. The effects of medical management on the progression of diabetic retinopathy in persons with type 2 diabetes: the Action to Control Cardiovascular Risk in Diabetes (ACCORD) Eye Study. Ophthalmology. 2014;121(12):2443–51.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Ting DSW, Tan K-A, Phua V, Tan GSW, Wong CW, Wong TY. Biomarkers of diabetic retinopathy. Curr Diab Rep. 2016;16(12):125.PubMedGoogle Scholar
  62. 62.
    Sasongko M, Wong T, Jenkins A, Nguyen T, Shaw J, Wang J. Circulating markers of inflammation and endothelial function, and their relationship to diabetic retinopathy. Diabet Med. 2015;32(5):686–91.PubMedGoogle Scholar
  63. 63.
    Song J, Chen S, Liu X, Duan H, Kong J, Li Z. Relationship between C-reactive protein level and diabetic retinopathy: a systematic review and meta-analysis. PLoS One. 2015;10(12):e0144406.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Simó-Servat O, Simó R, Hernández C. Circulating biomarkers of diabetic retinopathy: an overview based on physiopathology. J Diabetes Res. 2016;2016:1–13.Google Scholar
  65. 65.
    HIRATA K, KUBO K. Relationship between blood levels of N-carboxymethyl-lysine and pentosidine and the severity of microangiopathy in type 2 diabetes. Endocr J. 2004;51(6):537–44.PubMedGoogle Scholar
  66. 66.
    McVicar CM, Ward M, Colhoun LM, Guduric-Fuchs J, Bierhaus A, Fleming T, et al. Role of the receptor for advanced glycation endproducts (RAGE) in retinal vasodegenerative pathology during diabetes in mice. Diabetologia. 2015;58(5):1129–37.  https://doi.org/10.1007/s00125-015-3523-x.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994;331(22):1480–7.PubMedGoogle Scholar
  68. 68.
    Nicholson BP, Schachat AP. A review of clinical trials of anti-VEGF agents for diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2010;248(7):915–30.PubMedGoogle Scholar
  69. 69.
    Adamiec-Mroczek J, Oficjalska-Młyńczak J, Misiuk-Hojło M. Roles of endothelin-1 and selected proinflammatory cytokines in the pathogenesis of proliferative diabetic retinopathy: analysis of vitreous samples. Cytokine. 2010;49(3):269–74.PubMedGoogle Scholar
  70. 70.
    Chernykh V, Varvarinsky E, Smirnov E, Chernykh D, Trunov AN. Proliferative and inflammatory factors in the vitreous of patients with proliferative diabetic retinopathy. Indian J Ophthalmol. 2015;63(1):33–6.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Funatsu H, Noma H, Mimura T, Eguchi S, Hori S. Association of vitreous inflammatory factors with diabetic macular edema. Ophthalmology. 2009;116(1):73–9.PubMedGoogle Scholar
  72. 72.
    Praidou A, Klangas I, Papakonstantinou E, Androudi S, Georgiadis N, Karakiulakis G, et al. Vitreous and serum levels of platelet-derived growth factor and their correlation in patients with proliferative diabetic retinopathy. Curr Eye Res. 2009;34(2):152–61.PubMedGoogle Scholar
  73. 73.
    Suzuki Y, Nakazawa M, Suzuki K, Yamazaki H, Miyagawa Y. Expression profiles of cytokines and chemokines in vitreous fluid in diabetic retinopathy and central retinal vein occlusion. Jpn J Ophthalmol. 2011;55(3):256–63.  https://doi.org/10.1007/s10384-011-0004-8.CrossRefPubMedGoogle Scholar
  74. 74.
    Tsai T, Kuehn S, Tsiampalis N, Vu M-K, Kakkassery V, Stute G, et al. Anti-inflammatory cytokine and angiogenic factors levels in vitreous samples of diabetic retinopathy patients. PLoS One. 2018;13(3):e0194603.  https://doi.org/10.1371/journal.pone.0194603.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Zhou J, Wang S, Xia X. Role of intravitreal inflammatory cytokines and angiogenic factors in proliferative diabetic retinopathy. Curr Eye Res. 2012;37(5):416–20.PubMedGoogle Scholar
  76. 76.
    • McAuley AK, Sanfilippo PG, Hewitt AW, Liang H, Lamoureux E, Wang JJ, et al. Vitreous biomarkers in diabetic retinopathy: a systematic review and meta-analysis. J Diabetes Complicat. 2014;28(3):419–25. Meta-analysis summarizing important biomarkers in DR. PubMedGoogle Scholar
  77. 77.
    Yokota T, Ma RC, Park J-Y, Isshiki K, Sotiropoulos KB, Rauniyar RK, et al. Role of protein kinase C on the expression of platelet-derived growth factor and endothelin-1 in the retina of diabetic rats and cultured retinal capillary pericytes. Diabetes. 2003;52(3):838–45.PubMedGoogle Scholar
  78. 78.
    Jo N, Mailhos C, Ju M, Cheung E, Bradley J, Nishijima K, et al. Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization. Am J Pathol. 2006;168(6):2036–53.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Dong A, Seidel C, Snell D, Ekawardhani S, Ahlskog JK, Baumann M, et al. Antagonism of PDGF-BB suppresses subretinal neovascularization and enhances the effects of blocking VEGF-A. Angiogenesis. 2014;17(3):553–62.PubMedGoogle Scholar
  80. 80.
    Dawson D, Volpert O, Gillis P, Crawford S, Xu H-J, Benedict W, et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science. 1999;285(5425):245–8.PubMedGoogle Scholar
  81. 81.
    Liu Y, Leo LF, McGregor C, Grivitishvili A, Barnstable CJ, Tombran-Tink J. Pigment epithelium-derived factor (PEDF) peptide eye drops reduce inflammation, cell death and vascular leakage in diabetic retinopathy in Ins2 Akita mice. Mol Med. 2012;18(10):1387–401.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Park K, Jin J, Hu Y, Zhou K, Ma J-x. Overexpression of pigment epithelium–derived factor inhibits retinal inflammation and neovascularization. Am J Pathol. 2011;178(2):688–98.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Wang Q, Gorbey S, Pfister F, Höger S, Dorn-Beineke A, Krügel K, et al. Long-term treatment with suberythropoietic Epo is vaso-and neuroprotective in experimental diabetic retinopathy. Cell Physiol Biochem. 2011;27(6):769–82.PubMedGoogle Scholar
  84. 84.
    Oh IK, Kim S-W, Oh J, Lee TS, Huh K. Inflammatory and angiogenic factors in the aqueous humor and the relationship to diabetic retinopathy. Curr Eye Res. 2010;35(12):1116–27.PubMedGoogle Scholar
  85. 85.
    Funatsu H, Yamashita H, Noma H, Mimura T, Nakamura S, Sakata K, et al. Aqueous humor levels of cytokines are related to vitreous levels and progression of diabetic retinopathy in diabetic patients. Graefes Arch Clin Exp Ophthalmol. 2005;243(1):3–8.PubMedGoogle Scholar
  86. 86.
    Chen H, Zhang X, Liao N, Wen F. Assessment of biomarkers using multiplex assays in aqueous humor of patients with diabetic retinopathy. BMC Ophthalmol. 2017;17(1):176.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Vujosevic S, Micera A, Bini S, Berton M, Esposito G, Midena E. Aqueous humor biomarkers of Müller cell activation in diabetic eyes. Invest Ophthalmol Vis Sci. 2015;56(6):3913–8.PubMedGoogle Scholar
  88. 88.
    Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy. N Engl J Med. 2012;366(13):1227–39.  https://doi.org/10.1056/nejmra1005073.CrossRefPubMedGoogle Scholar
  89. 89.
    Hillier RJ, Ojaimi E, Wong DT, Mak MY, Berger AR, Kohly RP, et al. Aqueous humor cytokine levels as biomarkers of disease severity in diabetic macular edema. Retina (Philadelphia, Pa). 2017;37(4):761–9.Google Scholar
  90. 90.
    Hillier RJ, Ojaimi E, Wong DT, Mak MYK, Berger AR, Kohly RP, et al. Aqueous humor cytokine levels and anatomic response to intravitreal ranibizumab in diabetic macular edema. JAMA Ophthalmol. 2018;136(4):382–8.  https://doi.org/10.1001/jamaophthalmol.2018.0179.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Arar NH, Freedman BI, Adler SG, Iyengar SK, Chew EY, Davis MD, et al. Heritability of the severity of diabetic retinopathy: the FIND-Eye study. Invest Ophthalmol Vis Sci. 2008;49(9):3839–45.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Hietala K, Forsblom C, Summanen P, Groop P-H. Heritability of proliferative diabetic retinopathy. Diabetes. 2008;57(8):2176–80.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Burdon KP, Fogarty RD, Shen W, Abhary S, Kaidonis G, Appukuttan B, et al. Genome-wide association study for sight-threatening diabetic retinopathy reveals association with genetic variation near the GRB2 gene. Diabetologia. 2015;58(10):2288–97.PubMedGoogle Scholar
  94. 94.
    Abhary S, Burdon KP, Laurie KJ, Thorpe S, Landers J, Goold L, et al. Aldose reductase gene polymorphisms and diabetic retinopathy susceptibility. Diabetes Care. 2010;33(8):1834–6.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Awata T, Inoue K, Kurihara S, Ohkubo T, Watanabe M, Inukai K, et al. A common polymorphism in the 5′-untranslated region of the VEGF gene is associated with diabetic retinopathy in type 2 diabetes. Diabetes. 2002;51(5):1635–9.PubMedGoogle Scholar
  96. 96.
    Perrone L, Matrone C, Singh LP. Epigenetic modifications and potential new treatment targets in diabetic retinopathy. J Ophthalmol. 2014;2014:1–10.  https://doi.org/10.1155/2014/789120.CrossRefGoogle Scholar
  97. 97.
    Perrone L, Devi TS, Ki H, Terasaki T, Singh LP. Thioredoxin interacting protein (TXNIP) induces inflammation through chromatin modification in retinal capillary endothelial cells under diabetic conditions. J Cell Physiol. 2009;221(1):262–72.PubMedGoogle Scholar
  98. 98.
    Devi TS, Somayajulu M, Kowluru RA, Singh LP. TXNIP regulates mitophagy in retinal Müller cells under high-glucose conditions: implications for diabetic retinopathy. Cell Death Dis. 2017;8(5):e2777.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Perrone L, Devi T, Hosoya K, Terasaki T, Singh L. Inhibition of TXNIP expression in vivo blocks early pathologies of diabetic retinopathy. Cell Death Dis. 2010;1(8):e65.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Kadiyala CSR, Zheng L, Du Y, Yohannes E, Kao H-Y, Miyagi M, et al. Acetylation of retinal histones in diabetes increases inflammatory proteins effects of minocycline and manipulation of histone acetyltransferase (HAT) and histone deacetylase (HDAC). J Biol Chem. 2012;287(31):25869–80.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Malik AN, Parsade CK, Ajaz S, Crosby-Nwaobi R, Gnudi L, Czajka A, et al. Altered circulating mitochondrial DNA and increased inflammation in patients with diabetic retinopathy. Diabetes Res Clin Pract. 2015;110(3):257–65.PubMedGoogle Scholar
  102. 102.
    Madsen-Bouterse SA, Mohammad G, Kanwar M, Kowluru RA. Role of mitochondrial DNA damage in the development of diabetic retinopathy, and the metabolic memory phenomenon associated with its progression. Antioxid Redox Signal. 2010;13(6):797–805.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Mishra M, Lillvis J, Seyoum B, Kowluru RA. Peripheral blood mitochondrial DNA damage as a potential noninvasive biomarker of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2016;57(10):4035–44.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Zampetaki A, Willeit P, Burr S, Yin X, Langley SR, Kiechl S, et al. Angiogenic microRNAs linked to incidence and progression of diabetic retinopathy in type 1 diabetes. Diabetes. 2016;65(1):216–27.PubMedGoogle Scholar
  105. 105.
    Qing S, Yuan S, Yun C, Hui H, Mao P, Wen F, et al. Serum miRNA biomarkers serve as a fingerprint for proliferative diabetic retinopathy. Cell Physiol Biochem. 2014;34(5):1733–40.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Ophthalmology, Feinberg School of MedicineNorthwestern UniversityChicagoUSA

Personalised recommendations