Current Diabetes Reports

, 18:144 | Cite as

The Evolving Role of the Cardiologist in the Management of Type 2 Diabetes

  • Robert J. ChiltonEmail author
  • Kelly M. Gallegos
  • José Silva-Cardoso
  • Rene Oliveros
  • Son Pham
Macrovascular Complications in Diabetes (VR Aroda and A Getaneh, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Macrovascular Complications in Diabetes


Purpose of Review

To evaluate the treatment of type 2 diabetes from a cardiologist’s view.

Recent Findings

A new era in the treatment of type 2 diabetes began for the cardiologist in 2015 with the publication of the EMPA-REG outcome trial finding a significant reduction in CV death with empagliflozin (oral sodium-glucose co-transporter-2 [SGLT2] inhibitor) in patients with type 2 diabetes at increased cardiovascular risk. Shortly thereafter, the injectable glucagon-like peptide agonists (GLP-1) liraglutide and semaglutide found a significant reduction in composite major cardiovascular events (CV death, non-fatal MI, or stroke). Both classes have demonstrated significant renal protection when added to usual care. Moreover, there may be some exciting new benefits of SGLT2 inhibitors for patients with heart failure. These research studies are underway.


These two new classes of cardiovascular drugs for type 2 diabetes usher in a new era for the cardiologist who sees greater than 50% of patients with diabetes. The off-target effect of these agents is different as with all new cardiovascular compounds. While safety profiles in these populations are consistent with the known effects of these classes, new off-target effects have been seen with some agents in this class. Ongoing collaboration between cardiologists and other care providers remains important in the implementation of the evidence and care of patients with type 2 diabetes.


SGLT 2 inhibitors GLP-1 agonist Retinopathy Amputations Kidney protection Heart failure 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Centers for Disease Control and Prevention. New CDC report: more than 100 million Americans have diabetes or prediabetes. Available from: Accessed 18 July.
  2. 2.
    National Diabetes Statistic Report, 2017. Estimates of diabetes and its burden in the United States. Available from Accessed 30 August.
  3. 3.
    Savage PD, Banzer JA, Balady GJ, Ades PA. Prevalence of metabolic syndrome in cardiac rehabilitation/secondary preventions programs. Am Heart J. 2005;149:627–31. Scholar
  4. 4.
    Gyberg V, De Bacquer D, De Backer G, Jennings C, Kotseva K, Mellbin L, et al. Patients with coronary artery disease and diabetes need improved management: a report from the EUROASPIRE IV survey: a registry from the EuroObservational Research Programme of the European Society of Cardiology. Cardiovasc Diabetol. 2015;14:133. Scholar
  5. 5.
    Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364:937–52. Scholar
  6. 6.
    • Oellgaard J, Gaede P, Rossing P, Rorth R, Kober L, Parving HH, et al. Reduced risk of heart failure with intensified multifactorial intervention in individuals with type 2 diabetes and microalbuminuria: 21 years of follow-up in the randomised Steno-2 study. Diabetologia. 2018;61:1724–33. This study is important because it continues to find significant benefits in global risk reduction. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gaede P, Oellgaard J, Carstensen B, Rossing P, Lund-Anderson H, Parving HH, et al. Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: 21 years follow-up on the Steno-2 randomised trial. Diabetologia. 2016;59:2298–307. Scholar
  8. 8.
    Farkouh ME, Domanski M, Sleeper LA, Siami FS, Dangas G, Mack M, et al. Strategies for multivessel revascularization in patients with diabetes. N Engl J Med. 2012;357:2375–84.
  9. 9.
    Dangas GD, Farkouh ME, Sleeper LA, Yang M, Schoos MM, Macaya C, et al. Long-term outcome of PCI versus CABG in insulin and non-insulin-treated diabetic patients: results from the FREEDOM trial. J Am Coll Cardiol. 2014;64:1189–97. Scholar
  10. 10.
    UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;12:837–53.Google Scholar
  11. 11.
    ADVANCE Collaborative Group, Patel A, MacMahon S, Chalmers J, Neal B, Billot L, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–72. Scholar
  12. 12.
    Ismail-Beigi F, Craven T, Banerji MA, Basile J, Calles J, Cohen RM, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet. 2010;376:419–30. Scholar
  13. 13.
    Duckworth W, Abraira C, Moritz T, Red D, Emanuele N, Reaven PD, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360:129–39. Scholar
  14. 14.
    • Zoungas S, Arima H, Gerstein HC, Holman RR, Woodward M, Reaven P, et al. Effects of intensive glucose control on microvascular outcomes in patients with type 2 diabetes: a meta-analysis of individual participant data from randomised controlled trials. Lancet Diabetes Endocrinol. 2017;5:431–7. This study addresses the importance of glucose control for microvascular events. CrossRefPubMedGoogle Scholar
  15. 15.
    ADVANCE Collaborative Group, Patel A, MacMahon S, Chalmers J, Neal B, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J. 2008;358:2560–72. Scholar
  16. 16.
    • Conceicao J, Dores J, Araujo F, Laires PA, Carr RD, Brodovicz K, et al. Severe hypoglycaemia among patients with type 2 diabetes requiring emergency hospital admission: the Hypoglycaemia In Portugal Observational Study-Emergency Room (HIPOS-ER). Diabetes Obes Metab. 2018;20:50–9. This study shows that hypoglycemia is one of the most important side effects in diabetes treatment with significant morbidity and mortality. CrossRefPubMedGoogle Scholar
  17. 17.
    • Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28. This trial changed the treatment of type 2 diabetes, placing it alongside other cardiovascular agents. CrossRefGoogle Scholar
  18. 18.
    FDA briefing document: Endocrine and Metabolic Drug Advisory Committee Meeting. June 28, 2016. Accessed September 10, 2018.
  19. 19.
    Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366:1279–89. Scholar
  20. 20.
    Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–57. Scholar
  21. 21.
    Inzucchi SE, Iliev H, Pfarr E, Zinman B. Empagliflozin and assessment of lower-limb amputations in the EMPA-REG OUTCOME trial. Diabetes Care. 2018;41:e4–5. Scholar
  22. 22.
    Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006;368:1696–705. Scholar
  23. 23.
    Marso SP, Hardy E, Han J, Wang H, Chilton RJ. Changes in heart rate associated with exenatide once weekly: pooled analysis of clinical data in patients with type 2 diabetes. Diabetes Ther. 2018;9:551–64. Scholar
  24. 24.
    Scirica BM, Braunwald E, Raz I, Cavender MA, Morrow DA, Jarolim P, et al. Heart failure, saxagliptin, and diabetes mellitus: observations from the SAVOR-TIMI 53 randomized trial. Circulation. 2014;130:1579–88. Scholar
  25. 25.
    Pfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, Kober LV, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015;373:2247–57. Scholar
  26. 26.
    Holman RR, Bethel MA, Mentz RJ, Thompson VP, Lokhnygina Y, Buse JB, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017;377:1228–39. Scholar
  27. 27.
    Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375:311–22. Scholar
  28. 28.
    Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jodar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375:1834–44. Scholar
  29. 29.
    Bethel MA, Patel RA, Merrill P, Lokhnygina Y, Buse JB, Mentz RJ, et al. Cardiovascular outcomes with glucagon-like peptine-1 receptor agonists in patients with type 2 diabetes: a meta-analysis. Lancet Diabetes Endocrinol. 2018;6:105–13. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Robert J. Chilton
    • 1
    Email author
  • Kelly M. Gallegos
    • 1
  • José Silva-Cardoso
    • 2
  • Rene Oliveros
    • 1
  • Son Pham
    • 1
  1. 1.Division of CardiologyUT Health San AntonioSan AntonioUSA
  2. 2.PortoPortugal

Personalised recommendations