SGLT2-I in the Hospital Setting: Diabetic Ketoacidosis and Other Benefits and Concerns

  • Joshua A. Levine
  • Susan L. Karam
  • Grazia AleppoEmail author
Hospital Management of Diabetes (A Wallia and JJ Seley, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Hospital Management of Diabetes


Purpose of Review

Sodium-glucose cotransporter 2 (SGLT2) inhibitors are the newest class of antihyperglycemic agents. They are increasingly being prescribed in the outpatient diabetic population. In this review, we examine the risks and benefits of continuation and initiation of SGLT2 inhibitors in the inpatient setting.

Recent Findings

There are currently no published data regarding safety and efficacy of SGLT2 inhibitor use in the hospital. Outpatient data suggests that SGLT2 inhibitors have low hypoglycemic risk. They also decrease systolic blood pressure and can prevent cardiovascular death. The EMPA-REG study also showed a decrease in admissions for acute decompensated heart failure. There have been increasing cases of diabetic ketoacidosis, and specifically the euglycemic manifestation, associated with SGLT2 inhibitors use. We present two cases of inpatient SGLT2 inhibitor use, one of continuation of outpatient therapy and one of new initiation of therapy. We then discuss potential risks and methods to mitigate these as well as benefits of these medications in the inpatient setting.


We cautiously suggest the use of SGLT2 inhibitors in the hospital. However, these must be used judiciously and the practitioner must be aware of euglycemic diabetic ketoacidosis and its risk factors in this population.


SGLT2 inhibitor DKA Euglycemic DKA Heart failure Inpatient 


Compliance with Ethical Standards

Conflict of Interest

Joshua A. Levine and Susan L. Karam declare that they have no conflict of interest.

Grazia Aleppo reports grants from BMS-AstraZeneca and a consulting fee for a lecture from Boehringer-Ingelheim.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011;91(2):733–94. doi: 10.1152/physrev.00055.2009.CrossRefPubMedGoogle Scholar
  2. 2.
    Nauck MA. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes. Drug Des Devel Ther. 2014;8:1335–80. doi: 10.2147/DDDT.S50773.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chasis H, Jolliffe N, Smith HW. The action of phlorizin on the excretion of glucose, xylose, sucrose, creatinine and urea by man. J Clin Invest. 1933;12(6):1083–90. doi: 10.1172/JCI100559.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rossetti L, Shulman GI, Zawalich W, DeFronzo RA. Effect of chronic hyperglycemia on in vivo insulin secretion in partially pancreatectomized rats. J Clin Invest. 1987;80(4):1037–44. doi: 10.1172/JCI113157.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rossetti L, Smith D, Shulman GI, Papachristou D, DeFronzo RA. Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Invest. 1987;79(5):1510–5. doi: 10.1172/JCI112981.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Grempler R, Thomas L, Eckhardt M, Himmelsbach F, Sauer A, Sharp DE, et al. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes Metab. 2012;14(1):83–90. doi: 10.1111/j.1463-1326.2011.01517.x.CrossRefPubMedGoogle Scholar
  7. 7.
    •• Stenlof K, Cefalu WT, Kim KA, Alba M, Usiskin K, Tong C, et al. Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes Metab. 2013;15(4):372–82. doi: 10.1111/dom.12054. Phase III clinical trial of canagliflozin versus placebo. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    •• Ferrannini E, Ramos SJ, Salsali A, Tang W, List JF. Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care. 2010;33(10):2217–24. doi: 10.2337/dc10-0612. Phase III clinical trial of dapagliflozin versus placebo. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    •• Roden MWJ, Eilbracht J, Delafont B, Kim G, Woerle HJ, Broedl UC. Empagliflozin monotherapy with sitagliptin as an active comparator in patients with type 2 diabetes: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 2013;1(3):208–19. Phase III clinical trial of empagliflozin versus placebo. CrossRefPubMedGoogle Scholar
  10. 10.
    Cefalu WT, Leiter LA, Yoon KH, Arias P, Niskanen L, Xie J, et al. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet. 2013;382(9896):941–50. doi: 10.1016/S0140-6736(13)60683-2.CrossRefPubMedGoogle Scholar
  11. 11.
    Nauck MA, Del Prato S, Meier JJ, Duran-Garcia S, Rohwedder K, Elze M, et al. Dapagliflozin versus glipizide as add-on therapy in patients with type 2 diabetes who have inadequate glycemic control with metformin: a randomized, 52-week, double-blind, active-controlled noninferiority trial. Diabetes Care. 2011;34(9):2015–22. doi: 10.2337/dc11-0606.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Haring HU, Merker L, Seewaldt-Becker E, Weimer M, Meinicke T, Broedl UC, et al. Empagliflozin as add-on to metformin in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care. 2014;37(6):1650–9. doi: 10.2337/dc13-2105.CrossRefPubMedGoogle Scholar
  13. 13.
    Yale JF, Bakris G, Cariou B, Yue D, David-Neto E, Xi L, et al. Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes Metab. 2013;15(5):463–73. doi: 10.1111/dom.12090.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wilding JP, Woo V, Soler NG, Pahor A, Sugg J, Rohwedder K, et al. Long-term efficacy of dapagliflozin in patients with type 2 diabetes mellitus receiving high doses of insulin: a randomized trial. Ann Intern Med. 2012;156(6):405–15. doi: 10.7326/0003-4819-156-6-201203200-00003.CrossRefPubMedGoogle Scholar
  15. 15.
    Rosenstock J, Jelaska A, Frappin G, Salsali A, Kim G, Woerle HJ, et al. Improved glucose control with weight loss, lower insulin doses, and no increased hypoglycemia with empagliflozin added to titrated multiple daily injections of insulin in obese inadequately controlled type 2 diabetes. Diabetes Care. 2014;37(7):1815–23. doi: 10.2337/dc13-3055.CrossRefPubMedGoogle Scholar
  16. 16.
    •• Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28. doi: 10.1056/NEJMoa1504720. This study showed a risk reduction in cardiovascular outcomes in patients being treated with empagliflozin versus placebo. CrossRefPubMedGoogle Scholar
  17. 17.
    FDA. FDA approves Jardiance to reduce cardiovascular death in adults with type 2 diabetes. 2016. Accessed December 4 2016.
  18. 18.
    Association AD. Standards of medical care in diabetes. Diabetes Care. 2016;39(S1):1–112.Google Scholar
  19. 19.
    Moghissi ES, Korytkowski MT, DiNardo M, Einhorn D, Hellman R, Hirsch IB, et al. American Association of Clinical Endocrinologists and American Diabetes Association consensus statement on inpatient glycemic control. Endocr Pract. 2009;15(4):353–69. doi: 10.4158/EP09102.RA.CrossRefPubMedGoogle Scholar
  20. 20.
    Umpierrez GE, Gianchandani R, Smiley D, Jacobs S, Wesorick DH, Newton C, et al. Safety and efficacy of sitagliptin therapy for the inpatient management of general medicine and surgery patients with type 2 diabetes: a pilot, randomized, controlled study. Diabetes Care. 2013;36(11):3430–5. doi: 10.2337/dc13-0277.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yang XP, Lai D, Zhong XY, Shen HP, Huang YL. Efficacy and safety of canagliflozin in subjects with type 2 diabetes: systematic review and meta-analysis. Eur J Clin Pharmacol. 2014;70(10):1149–58. doi: 10.1007/s00228-014-1730-x.CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang M, Zhang L, Wu B, Song H, An Z, Li S. Dapagliflozin treatment for type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabetes Metab Res Rev. 2014;30(3):204–21. doi: 10.1002/dmrr.2479.CrossRefPubMedGoogle Scholar
  23. 23.
    Liakos A, Karagiannis T, Athanasiadou E, Sarigianni M, Mainou M, Papatheodorou K, et al. Efficacy and safety of empagliflozin for type 2 diabetes: a systematic review and meta-analysis. Diabetes Obes Metab. 2014;16(10):984–93. doi: 10.1111/dom.12307.CrossRefPubMedGoogle Scholar
  24. 24.
    • Peters AL, Buschur EO, Buse JB, Cohan P, Diner JC, Hirsch IB. Euglycemic diabetic ketoacidosis: a potential complication of treatment with sodium-glucose cotransporter 2 inhibition. Diabetes Care. 2015;38(9):1687–93. doi: 10.2337/dc15-0843. Case series showing euglycemic DKA in patients treated with canagliflozin. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    • Erondu N, Desai M, Ways K, Meininger G. Diabetic ketoacidosis and related events in the canagliflozin type 2 diabetes clinical program. Diabetes Care. 2015;38(9):1680–6. doi: 10.2337/dc15-1251. Analysis of adverse events and DKA in patients enrolled in canagliflozin trials. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Drug Safety Communication. FDA revises labels of SGLT2 inhibitors for diabetes to include warnings about too much acid in the blood and serious urinary tract infections. 2015. Accessed November 20 2016.
  27. 27.
    Tang H, Li D, Wang T, Zhai S, Song Y. Effect of sodium-glucose cotransporter 2 inhibitors on diabetic ketoacidosis among patients with type 2 diabetes: a meta-analysis of randomized controlled trials. Diabetes Care. 2016;39(8):e123–4. doi: 10.2337/dc16-0885.CrossRefPubMedGoogle Scholar
  28. 28.
    Rosenstock J, Ferrannini E. Euglycemic diabetic ketoacidosis: a predictable, detectable, and preventable safety concern with SGLT2 inhibitors. Diabetes Care. 2015;38(9):1638–42. doi: 10.2337/dc15-1380.CrossRefPubMedGoogle Scholar
  29. 29.
    Sha S, Devineni D, Ghosh A, Polidori D, Chien S, Wexler D, et al. Canagliflozin, a novel inhibitor of sodium glucose co-transporter 2, dose dependently reduces calculated renal threshold for glucose excretion and increases urinary glucose excretion in healthy subjects. Diabetes Obes Metab. 2011;13(7):669–72. doi: 10.1111/j.1463-1326.2011.01406.x.CrossRefPubMedGoogle Scholar
  30. 30.
    Kitabchi AE, Umpierrez GE, Miles JM, Fisher JN. Hyperglycemic crises in adult patients with diabetes. Diabetes Care. 2009;32(7):1335–43. doi: 10.2337/dc09-9032.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Rewers A. Current controversies in treatment and prevention of diabetic ketoacidosis. Adv Pediatr Infect Dis. 2010;57(1):247–67. doi: 10.1016/j.yapd.2010.09.001.Google Scholar
  32. 32.
    Wolfsdorf J, Glaser N, Sperling MA, American Diabetes A. Diabetic ketoacidosis in infants, children, and adolescents: a consensus statement from the American Diabetes Association. Diabetes Care. 2006;29(5):1150–9. doi: 10.2337/diacare.2951150.CrossRefPubMedGoogle Scholar
  33. 33.
    Rewers A, McFann K, Chase HP. Bedside monitoring of blood beta-hydroxybutyrate levels in the management of diabetic ketoacidosis in children. Diabetes Technol Ther 2006;8(6):671–6.Google Scholar
  34. 34.
    Byrne HA, Tieszen KL, Hollis S, Dornan TL, New JP. Evaluation of an electrochemical sensor for measuring blood ketones. Diabetes Care 2000;23(4):500–3.Google Scholar
  35. 35.
    Wallace TM, Meston NM, Gardner SG, Matthews DR. The hospital and home use of a 30-second hand-held blood ketone meter: guidelines for clinical practice. Diabet Med 2001;18(8):640–5.Google Scholar
  36. 36.
    Sha S, Polidori D, Heise T, Natarajan J, Farrell K, Wang SS, et al. Effect of the sodium glucose co-transporter 2 inhibitor canagliflozin on plasma volume in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2014;16(11):1087–95. doi: 10.1111/dom.12322.CrossRefPubMedGoogle Scholar
  37. 37.
    Fitchett D, Zinman B, Wanner C, Lachin JM, Hantel S, Salsali A, et al. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME® trial. Eur Heart J. 2016;37(19):1526–34. doi: 10.1093/eurheartj/ehv728.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Baker WL, Smyth LR, Riche DM, Bourret EM, Chamberlin KW, White WB. Effects of sodium-glucose co-transporter 2 inhibitors on blood pressure: a systematic review and meta-analysis. J Am Soc Hypertens. 2014;8(4):262–275 e9. doi: 10.1016/j.jash.2014.01.007.CrossRefPubMedGoogle Scholar
  39. 39.
    Weber MA, Mansfield TA, Cain VA, Iqbal N, Parikh S, Ptaszynska A. Blood pressure and glycaemic effects of dapagliflozin versus placebo in patients with type 2 diabetes on combination antihypertensive therapy: a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Diabetes Endocrinol. 2016;4(3):211–20. doi: 10.1016/S2213-8587(15)00417-9.CrossRefPubMedGoogle Scholar
  40. 40.
    Weber MA, Mansfield TA, Alessi F, Iqbal N, Parikh S, Ptaszynska A. Effects of dapagliflozin on blood pressure in hypertensive diabetic patients on renin-angiotensin system blockade. Blood Press. 2016;25(2):93–103. doi: 10.3109/08037051.2015.1116258.CrossRefPubMedGoogle Scholar
  41. 41.
    Devineni D, Vaccaro N, Polidori D, Rusch S, Wajs E. Effects of hydrochlorothiazide on the pharmacokinetics, pharmacodynamics, and tolerability of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in healthy participants. Clin Ther. 2014;36(5):698–710. doi: 10.1016/j.clinthera.2014.02.022.CrossRefPubMedGoogle Scholar
  42. 42.
    • Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375(4):323–34. doi: 10.1056/NEJMoa1515920. This study demonstrated a reduction in progression to diabetic nephropathy in patients on empagliflozin in the EMPA-REG trial. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Joshua A. Levine
    • 1
  • Susan L. Karam
    • 1
  • Grazia Aleppo
    • 1
    Email author
  1. 1.Division of Endocrinology, Metabolism, and Molecular MedicineNorthwestern University Feinberg School of MedicineChicagoUSA

Personalised recommendations