Skip to main content

Advertisement

Log in

Precision Medicine Approaches to Diabetic Kidney Disease: Tissue as an Issue

  • Microvascular Complications—Nephropathy (M Afkarian, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Precision medicine approaches, that tailor medications to specific individuals has made paradigm-shifting improvements for patients with certain cancer types.

Recent Findings

Such approaches, however, have not been implemented for patients with diabetic kidney disease. Precision medicine could offer new avenues for novel diagnostic, prognostic and targeted therapeutics development. Genetic studies associated with multiscalar omics datasets from tissue and cell types of interest of well-characterized cohorts are needed to change the current paradigm.

Summary

In this review, we will discuss precision medicine approaches that the nephrology community can take to analyze tissue samples to develop new therapeutics for patients with diabetic kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Breyer MD, Coffman TM, Flessner MF, Fried LF, Harris RC, Ketchum CJ, Kretzler M, Nelson RG, Sedor JR, Susztak K. Kidney Research National D. Diabetic nephropathy: a national dialogue. Clin J Am Soc Nephrol. 2013;8(9):1603–5. doi:10.2215/CJN.03640413.

    Article  PubMed  PubMed Central  Google Scholar 

  2. •• Tervaert TW, Mooyaart AL, Amann K, Cohen AH, Cook HT, Drachenberg CB, Ferrario F, Fogo AB, Haas M, de Heer E, Joh K, Noel LH, Radhakrishnan J, Seshan SV, Bajema IM, Bruijn JA, Renal PS. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21(4):556–63. doi:10.1681/ASN.2010010010. Important paper described a new classification system for DKD.

    Article  PubMed  Google Scholar 

  3. • Mogensen CE, Christensen CK. Predicting diabetic nephropathy in insulin-dependent patients. N Engl J Med. 1984;311(2):89–93. doi:10.1056/NEJM198407123110204. Original publication describing the clinical presentation of DKD.

    Article  CAS  PubMed  Google Scholar 

  4. Mogensen CE, Christensen CK, Vittinghus E. The stages in diabetic renal disease: with emphasis on the stage of incipient diabetic nephropathy. Diabetes. 1983;32(Suppl 2):64–78.

    Article  PubMed  Google Scholar 

  5. Breyer MD, Susztak K. Developing treatments for chronic kidney disease in the 21st century. Semin Nephrol. 2016a;36(6):436–47. doi:10.1016/j.semnephrol.2016.08.001.

    Article  PubMed  Google Scholar 

  6. Brosius 3rd FC, Alpers CE, Bottinger EP, Breyer MD, Coffman TM, Gurley SB, Harris RC, Kakoki M, Kretzler M, Leiter EH, Levi M, McIndoe RA, Sharma K, Smithies O, Susztak K, Takahashi N, Takahashi T. Animal models of diabetic complications C. Mouse models of diabetic nephropathy. J Am Soc Nephrol. 2009;20(12):2503–12. doi:10.1681/ASN.2009070721.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Si H, Banga RS, Kapitsinou P, Ramaiah M, Lawrence J, Kambhampati G, Gruenwald A, Bottinger E, Glicklich D, Tellis V, Greenstein S, Thomas DB, Pullman J, Fazzari M, Susztak K. Human and murine kidneys show gender- and species-specific gene expression differences in response to injury. PLoS One. 2009;4(3):e4802. doi:10.1371/journal.pone.0004802.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Christensen CK, Mogensen CE. The course of incipient diabetic nephropathy: studies of albumin excretion and blood pressure. Diabet Med. 1985;2(2):97–102.

    Article  CAS  PubMed  Google Scholar 

  9. Schmitz O, Hansen HE, Orskov H, Mogensen CE, Posborg PV. End-state renal failure in diabetic nephropathy: pathophysiology and treatment. Blood Purif. 1985;3(1–3):120–39.

    CAS  PubMed  Google Scholar 

  10. Newman DJ, Mattock MB, Dawnay AB, Kerry S, McGuire A, Yaqoob M, Hitman GA, Hawke C. Systematic review on urine albumin testing for early detection of diabetic complications. Health Technol Assess. 2005;9(30):iii-vi–xiii-163.

    Article  Google Scholar 

  11. Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, Raskin P, Zinman B, Diabetes C. Complications trial/epidemiology of diabetes I, complications study research G. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353(25):2643–53. doi:10.1056/NEJMoa052187.

    Article  PubMed  Google Scholar 

  12. Perkins BA, Ficociello LH, Roshan B, Warram JH, Krolewski AS. In patients with type 1 diabetes and new-onset microalbuminuria the development of advanced chronic kidney disease may not require progression to proteinuria. Kidney Int. 2010;77(1):57–64. doi:10.1038/ki.2009.399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Perkins BA, Aiello LP, Krolewski AS. Diabetes complications and the renin-angiotensin system. N Engl J Med. 2009;361(1):83–5. doi:10.1056/NEJMe0904293.

    Article  CAS  PubMed  Google Scholar 

  14. Ekinci EI, Jerums G, Skene A, Crammer P, Power D, Cheong KY, Panagiotopoulos S, McNeil K, Baker ST, Fioretto P, Macisaac RJ. Renal structure in normoalbuminuric and albuminuric patients with type 2 diabetes and impaired renal function. Diabetes Care. 2013;36(11):3620–6. doi:10.2337/dc12-2572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Caramori ML, Fioretto P, Mauer M. Low glomerular filtration rate in normoalbuminuric type 1 diabetic patients: an indicator of more advanced glomerular lesions. Diabetes. 2003;52(4):1036–40.

    Article  CAS  PubMed  Google Scholar 

  16. •• Sharma SG, Bomback AS, Radhakrishnan J, Herlitz LC, Stokes MB, Markowitz GS, D'Agati VD. The modern spectrum of renal biopsy findings in patients with diabetes. Clin J Am Soc Nephrol. 2013;8(10):1718–24. doi:10.2215/CJN.02510213. Recent publication describing pathological changes in kidney biopsies of patients with diabetes.

    Article  PubMed  PubMed Central  Google Scholar 

  17. • Thomas MC, Brownlee M, Susztak K, Sharma K, Jandeleit-Dahm KA, Zoungas S, Rossing P, Groop PH, Cooper ME. Diabetic kidney disease. Nat Rev Dis Primers. 2015;1:15018. doi:10.1038/nrdp.2015.18. Excellent review summarizing DKD, both clinical and basic science updates.

    Article  PubMed  Google Scholar 

  18. Iyengar SK, Sedor JR, Freedman BI, et al. Genome-wide association and trans-ethnic meta-analysis for advanced diabetic kidney disease: Family Investigation of Nephropathy and Diabetes (FIND). PLoS Genet. 2015;11(8):e1005352. doi:10.1371/journal.pgen.1005352.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Palmer ND, McDonough CW, Hicks PJ, et al. A genome-wide association search for type 2 diabetes genes in African Americans. PLoS One. 2012;7(1):e29202. doi:10.1371/journal.pone.0029202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sandholm N, McKnight AJ, Salem RM, Brennan EP, Forsblom C, Harjutsalo V, Makinen VP, McKay GJ, Sadlier DM, Williams WW, Martin F, Panduru NM, Tarnow L, Tuomilehto J, Tryggvason K, Zerbini G, Comeau ME, Langefeld CD, Consortium F, Godson C, Hirschhorn JN, Maxwell AP, Florez JC, Groop PH, FinnDiane Study G. The GC. Chromosome 2q31.1 associates with ESRD in women with type 1 diabetes. J Am Soc Nephrol. 2013;24(10):1537–43. doi:10.1681/ASN.2012111122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pattaro C, Teumer A, Gorski M, et al. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat Commun. 2016;7:10023. doi:10.1038/ncomms10023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stamatoyannopoulos JA. What does our genome encode? Genome Res. 2012;22(9):1602–11. doi:10.1101/gr.146506.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Consortium GT. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348(6235):648–60. doi:10.1126/science.1262110.

    Article  Google Scholar 

  24. Germain M, Pezzolesi MG, Sandholm N, McKnight AJ, Susztak K, Lajer M, Forsblom C, Marre M, Parving HH, Rossing P, Toppila I, Skupien J, Roussel R, Ko YA, Ledo N, Folkersen L, Civelek M, Maxwell AP, Tregouet DA, Groop PH, Tarnow L, Hadjadj S. SORBS1 gene, a new candidate for diabetic nephropathy: results from a multi-stage genome-wide association study in patients with type 1 diabetes. Diabetologia. 2015;58(3):543–8. doi:10.1007/s00125-014-3459-6.

    Article  CAS  PubMed  Google Scholar 

  25. • Ko YA, Mohtat D, Suzuki M, Park AS, Izquierdo MC, Han SY, Kang HM, Si H, Hostetter T, Pullman JM, Fazzari M, Verma A, Zheng D, Greally JM, Susztak K. Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development. Genome Biol. 2013;14(10):R108. doi:10.1186/gb-2013-14-10-r108. Epigenetic changes in kidney samples of patients with diabetic kidney disease.

    Article  PubMed  PubMed Central  Google Scholar 

  26. • Perkins BA, Nelson RG, Ostrander BE, Blouch KL, Krolewski AS, Myers BD, Warram JH. Detection of renal function decline in patients with diabetes and normal or elevated GFR by serial measurements of serum cystatin C concentration: results of a 4-year follow-up study. J Am Soc Nephrol. 2005;16(5):1404–12. doi:10.1681/ASN.2004100854. CKD development in patients with diabetes in absence of albuminuria.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Parsa A, Kao WH, Xie D, Astor BC, Li M, Hsu CY, Feldman HI, Parekh RS, Kusek JW, Greene TH, Fink JC, Anderson AH, Choi MJ, Wright Jr JT, Lash JP, Freedman BI, Ojo A, Winkler CA, Raj DS, Kopp JB, He J, Jensvold NG, Tao K, Lipkowitz MS, Appel LJ, Investigators AS, Investigators CS. APOL1 risk variants, race, and progression of chronic kidney disease. N Engl J Med. 2013;369(23):2183–96. doi:10.1056/NEJMoa1310345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Levey AS, Tangri N, Stevens LA. Classification of chronic kidney disease: a step forward. Ann Intern Med. 2011;154(1):65–7. doi:10.7326/0003-4819-154-1-201101040-00012.

    Article  PubMed  Google Scholar 

  29. •• Tangri N, Stevens LA, Griffith J, Tighiouart H, Djurdjev O, Naimark D, Levin A, Levey AS. A predictive model for progression of chronic kidney disease to kidney failure. JAMA. 2011;305(15):1553–9. doi:10.1001/jama.2011.451. Current prognostic biomarkers, 6 biochemical parameter can accurately predic functional decline in patients with CKD.

    Article  CAS  PubMed  Google Scholar 

  30. Gohda T, Niewczas MA, Ficociello LH, Walker WH, Skupien J, Rosetti F, Cullere X, Johnson AC, Crabtree G, Smiles AM, Mayadas TN, Warram JH, Krolewski AS. Circulating TNF receptors 1 and 2 predict stage 3 CKD in type 1 diabetes. J Am Soc Nephrol. 2012;23(3):516–24. doi:10.1681/ASN.2011060628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Niewczas MA, Gohda T, Skupien J, Smiles AM, Walker WH, Rosetti F, Cullere X, Eckfeldt JH, Doria A, Mayadas TN, Warram JH, Krolewski AS. Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes. J Am Soc Nephrol. 2012;23(3):507–15. doi:10.1681/ASN.2011060627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pavkov ME, Weil EJ, Fufaa GD, Nelson RG, Lemley KV, Knowler WC, Niewczas MA, Krolewski AS. Tumor necrosis factor receptors 1 and 2 are associated with early glomerular lesions in type 2 diabetes. Kidney Int. 2016;89(1):226–34. doi:10.1038/ki.2015.278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mise K, Hoshino J, Ueno T, Hazue R, Hasegawa J, Sekine A, Sumida K, Hiramatsu R, Hasegawa E, Yamanouchi M, Hayami N, Suwabe T, Sawa N, Fujii T, Hara S, Ohashi K, Takaichi K, Ubara Y. Prognostic value of tubulointerstitial lesions, urinary N-acetyl-beta-d-glucosaminidase, and urinary beta2-microglobulin in patients with type 2 diabetes and biopsy-proven diabetic nephropathy. Clin J Am Soc Nephrol. 2016;11(4):593–601. doi:10.2215/CJN.04980515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Menn-Josephy H, Lee CS, Nolin A, Christov M, Rybin DV, Weinberg JM, Henderson J, Bonegio R, Havasi A. Renal interstitial fibrosis: an imperfect predictor of kidney disease progression in some patient cohorts. Am J Nephrol. 2016;44(4):289–99. doi:10.1159/000449511.

    Article  PubMed  Google Scholar 

  35. Sekula P, Goek ON, Quaye L, Barrios C, Levey AS, Romisch-Margl W, Menni C, Yet I, Gieger C, Inker LA, Adamski J, Gronwald W, Illig T, Dettmer K, Krumsiek J, Oefner PJ, Valdes AM, Meisinger C, Coresh J, Spector TD, Mohney RP, Suhre K, Kastenmuller G, Kottgen A. A metabolome-wide association study of kidney function and disease in the general population. J Am Soc Nephrol. 2016;27(4):1175–88. doi:10.1681/ASN.2014111099.

    Article  CAS  PubMed  Google Scholar 

  36. Woroniecka KI, Park AS, Mohtat D, Thomas DB, Pullman JM, Susztak K. Transcriptome analysis of human diabetic kidney disease. Diabetes. 2011;60(9):2354–69. doi:10.2337/db10-1181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Breyer MD, Susztak K. The next generation of therapeutics for chronic kidney disease. Nat Rev Drug Discov. 2016b;15(8):568–88. doi:10.1038/nrd.2016.67.

    Article  CAS  PubMed  Google Scholar 

  38. Stadler K, Goldberg IJ, Susztak K. The evolving understanding of the contribution of lipid metabolism to diabetic kidney disease. Curr Diab Rep. 2015;15(7):40. doi:10.1007/s11892-015-0611-8.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kang HM, Ahn SH, Choi P, Ko YA, Han SH, Chinga F, Park AS, Tao J, Sharma K, Pullman J, Bottinger EP, Goldberg IJ, Susztak K. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med. 2015;21(1):37–46. doi:10.1038/nm.3762.

    Article  CAS  PubMed  Google Scholar 

  40. Han SH, Malaga-Dieguez L, Chinga F, Kang HM, Tao J, Reidy K, Susztak K. Deletion of Lkb1 in renal tubular epithelial cells leads to CKD by altering metabolism. J Am Soc Nephrol. 2016;27(2):439–53. doi:10.1681/ASN.2014121181.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katalin Susztak.

Ethics declarations

Conflict of Interest

Caroline Gluck and Yi-An Ko declare that they have no conflict of interest.

Katalin Susztak reports grants from Biogen, ONO Pharma, Boehringer Ingelheim, Regeneron, GSK, Celgene, NIH, and JDRF.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Microvascular Complications—Nephropathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gluck, C., Ko, YA. & Susztak, K. Precision Medicine Approaches to Diabetic Kidney Disease: Tissue as an Issue. Curr Diab Rep 17, 30 (2017). https://doi.org/10.1007/s11892-017-0854-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-017-0854-7

Keywords

Navigation