Current Colorectal Cancer Reports

, Volume 14, Issue 6, pp 217–225 | Cite as

Microbiome and Colorectal Cancer

  • Ishfaq Ahmed
  • Shahid UmarEmail author
Basic Science Foundations in Colorectal Cancer (DA Dixon and KE Hamilton, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Basic Science Foundations in Colorectal Cancer


Purpose of Review

The trillions of microbes collectively referred to as the human microbiota inhabit the human body and establish a beneficial relationship with the host. It is clear however that dysbiosis impacting microbial diversity in the gut may lead to the development of inflammatory and malignant gastrointestinal diseases including colorectal cancer (CRC). We provide a literature review of the recent influx of information related to the alterations in gut microbiota composition that influences CRC incidence and progression.

Recent Findings

A growing body of evidence implicates altered gut microbiota in the development of CRC. Profiles of CRC-associated microbiota have been shown to differ from those in healthy subjects and bacterial phylotypes vary depending on the primary tumor location. The compositional variation in the microbial profile is not restricted to cancerous tissue however and is different between cancers of the proximal and distal colons, respectively. More recently, studies have shed light on the “driver-passenger” model for CRC wherein, driver bacteria cause inflammation, increased cell proliferation and production of genotoxic substances to contribute towards mutational acquisition associated with adenoma-carcinoma sequence. These changes facilitate gradual replacement of driver bacteria by passengers that either promote or suppress tumor progression. Significant advances have also been made in associating individual bacterial species to consensus molecular subtypes (CMS) of CRC and this remarkable development is expected to galvanize scientific community into advancing therapeutic strategies for CRC.


Increasing evidence suggests a link between the intestinal microbiota and CRC development although the mechanisms through which the bacterial constituents of the microbiome contribute towards CRC are complex and yet to be fully fathomed. Thus, more exhaustive and mechanistic studies are needed to identify key interactions amongst diet, microbial community, and metabolites that help facilitate the adenoma-carcinoma sequence evolution in CRC. It is expected that development of therapeutics based on microbial association with CMS will likely facilitate the translation of molecular subtypes into the clinic for CRCs and potentially other malignancies.


Diet Microbiome Oncomicrobes Genotoxic bacteria Metabolome Inflammation Colorectal cancer 


Compliance with Ethical Standards

Conflict of Interest

The authors declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Cancer Genome Atlas Network, Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.Google Scholar
  2. 2.
    Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, et al. Proteogenomic characterization of human colon and rectal cancer. Nature. 2014;513:382–7.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Sinicrope FA, Shi Q, Smyrk TC, Thibodeau SN, Dienstmann R, Guinney J, et al. Molecular markers identify subtypes of stage iii colon cancer associated with patient outcomes. Gastroenterology. 2015;148:88–99.PubMedGoogle Scholar
  4. 4.
    Lee DW, Han SW, Cha Y. Association between mutations of critical pathway genes and survival outcomes according to the tumor location in colorectal cancer. Cancer. 2017;123:3513–23.PubMedGoogle Scholar
  5. 5.
    Ansa BE, Coughlin SS, Alema-Mensah E. Evaluation of colorectal cancer incidence trends in the United States (2000-2014). J Clin Med. 2018;7(2).Google Scholar
  6. 6.
    Janz T, Lu K, Povlow MR, Urso B. A review of colorectal cancer detection modalities, stool DNA, and fecal immunochemistry testing in adults over the age of 50. Cureus. 2016;8:e931.PubMedPubMedCentralGoogle Scholar
  7. 7.
    West L, Vidwans SJ, Campbell NP, Shrager J, Simon GR, Bueno R, et al. A novel classification of lung cancer into molecular subtypes. PLoS One. 2012;7:e31906.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Vidwans SJ, Flaherty KT, Fisher DE, Tenenbaum JM, Travers MD, Shrager J. A melanoma molecular disease model. PLoS One. 2011;6:e18257.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–6.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Okita A, Takahashi S, Ouchi K, Inoue M, Watanabe M, Endo M, et al. Consensus molecular subtypes classification of colorectal cancer as a predictive factor for chemotherapeutic efficacy against metastatic colorectal cancer. Oncotarget. 2018;9:18698–711.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology. 2008;135:1079–99.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Sears CL, Garrett WS. Microbes, microbiota, and colon cancer. Cell Host Microbe. 2014;15:317–28.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Dulal S, Keku TO. Gut microbiome and colorectal adenomas. Cancer J. 2014;20:225–31.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Irrazabal T, Belcheva A, Girardin SE, Martin A, Philpott DJ. The multifaceted role of the intestinal microbiota in colon cancer. Mol Cell. 2014;54:309–20.Google Scholar
  15. 15.
    Tlaskalova-Hogenova H, Vannucci L, Klimesova K, Stepankova R, Krizan J, Kverka M. Microbiome and colorectal carcinoma: insights from germ-free and conventional animal models. Cancer J. 2014;20:217–24.PubMedGoogle Scholar
  16. 16.
    Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G, et al. The gut microbiota and host health: a new clinical frontier. Gut. 2016;65:330–9.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. bioRxiv. 2016;14(8):e1002533.Google Scholar
  18. 18.
    Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124:837–48.PubMedGoogle Scholar
  19. 19.
    Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol. 2011;9:356–68.PubMedGoogle Scholar
  21. 21.
    Blaser MJ. The microbiome revolution. J Clin Invest. 2014;124:4162–5.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, et al. The long-term stability of the human gut microbiota. Science. 2013;341:1237439.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Gomez A, Petrzelkova K, Yeoman CJ, Vlckova K, Mrazek J, Koppova I, et al. Gut microbiome composition and metabolomic profiles of wild western lowland gorillas (gorilla gorilla gorilla) reflect host ecology. Mol Ecol. 2015;24:2551–65.PubMedGoogle Scholar
  24. 24.
    Ni J, Wu GD, Albenberg L, Tomov VT. Gut microbiota and ibd: causation or correlation? Nat Rev Gastroenterol Hepatol. 2017;14:573–84.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol. 2017;15:630–8.PubMedGoogle Scholar
  26. 26.
    Schulz MD, Atay C, Heringer J, Romrig FK, Schwitalla S, Aydin B, et al. High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature. 2014;514:508–12.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Nakatsu G, Li X, Zhou H, Sheng J, Wong SH. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat Commun. 2015;6:8727.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Wu N, Yang X, Zhang R, Li J, Xiao X, Hu Y, et al. Dysbiosis signature of fecal microbiota in colorectal cancer patients. Microb Ecol. 2013;66:462–70.PubMedGoogle Scholar
  29. 29.
    Tang WH, Hazen SL. The contributory role of gut microbiota in cardiovascular disease. J Clin Invest. 2014;124:4204–11.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Holmes E, Li JV, Marchesi JR, Nicholson JK. Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab. 2012;16:559–64.PubMedGoogle Scholar
  31. 31.
    Holmes E, Li JV, Athanasiou T, Ashrafian H, Nicholson JK. Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends Microbiol. 2011;19:349–59.PubMedGoogle Scholar
  32. 32.
    Wang X, Wang J, Rao B, Deng L. Gut flora profiling and fecal metabolite composition of colorectal cancer patients and healthy individuals. Exp Ther Med. 2017;13:2848–54.Google Scholar
  33. 33.
    Tsilimigras MC, Fodor A, Jobin C. Carcinogenesis and therapeutics: the microbiota perspective. Nat Microbiol. 2017;2:17008.Google Scholar
  34. 34.
    Cani PD, Plovier H, Van Hul M, Geurts L, Delzenne NM, Druart C, et al. Endocannabinoids--at the crossroads between the gut microbiota and host metabolism. Nat Rev Endocrinol. 2016;12:133–43.PubMedGoogle Scholar
  35. 35.
    Villeger R, Lopes A, Veziant J, Gagniere J, Barnich N, Billard E, et al. Microbial markers in colorectal cancer detection and/or prognosis. World J Gastroenterol. 2018;24:2327–47.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Dai Z, Coker OO, Nakatsu G, Wu WKK, Zhao L, Chen Z, et al. Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome. 2018;6:70.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Drewes JL, White JR, Dejea CM, Fathi P, Iyadorai T, Vadivelu J, Roslani AC. High-resolution bacterial 16s rrna gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia. NPJ Biofilms Microbiomes. 2017;3:34.Google Scholar
  38. 38.
    Buchta Rosean CM, Rutkowski MR. The influence of the commensal microbiota on distal tumor-promoting inflammation. Semin Immunol. 2017;32:62–73.PubMedGoogle Scholar
  39. 39.
    Gordon H, Trier Moller F, Andersen V, Harbord M. Heritability in inflammatory bowel disease: from the first twin study to genome-wide association studies. Inflamm Bowel Dis. 2015;21:1428–34.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Blekhman R, Goodrich JK, Huang K, Sun Q, Bukowski R, Bell JT, et al. Host genetic variation impacts microbiome composition across human body sites. Genome Biol. 2015;16:191.PubMedPubMedCentralGoogle Scholar
  41. 41.
    • O'Keefe SJ, Li JV, Lahti LF et al. Fibre and cancer risk in African Americans and rural Africans. Nat Commun. 2015;6:6342. A nice overview of risk factors associated with colon cancer propensity in African-American population . Google Scholar
  42. 42.
    Dore J, Blottiere H. The influence of diet on the gut microbiota and its consequences for health. Curr Opin Biotechnol. 2015;32:195–9.Google Scholar
  43. 43.
    den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54:2325–40.Google Scholar
  44. 44.
    Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499:97–101.PubMedGoogle Scholar
  45. 45.
    Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–6.Google Scholar
  46. 46.
    Mehta RS, Song M, Nishihara R, Drew DA, Wu K, Qian ZR, et al. Dietary patterns and risk of colorectal cancer: analysis by tumor location and molecular subtypes. Gastroenterology. 2017;152:1944–1953.e1941.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Bishehsari F, Mahdavinia M, Vacca M, Malekzadeh R, Mariani-Costantini R. Epidemiological transition of colorectal cancer in developing countries: environmental factors, molecular pathways, and opportunities for prevention. World J Gastroenterol. 2014;20:6055–72.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Stigliano V, Sanchez-Mete L, Martayan A, Anti M. Early-onset colorectal cancer: a sporadic or inherited disease? World J Gastroenterol. 2014;20:12420–30.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Zhao Z, Feng Q, Yin Z, Shuang J, Bai B, Yu P, et al. Red and processed meat consumption and colorectal cancer risk: a systematic review and meta-analysis. Oncotarget. 2017;8:83306–14.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Cascella M, Bimonte S. Dissecting the mechanisms and molecules underlying the potential carcinogenicity of red and processed meat in colorectal cancer (CRC): an overview on the current state of knowledge. Infect Agent Cancer. 2018;13:3.
  51. 51.
    Diallo A, Deschasaux M, Latino-Martel P, Hercberg S, Galan P, Fassier P, et al. Red and processed meat intake and cancer risk: results from the prospective Nutrinet-Sante cohort study. Int J Cancer. 2018;142:230–7.PubMedGoogle Scholar
  52. 52.
    Blaser MJ. Antibiotic use and its consequences for the normal microbiome. Science. 2016;352:544–5.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Peterson CT, Sharma V, Elmen L, Peterson SN. Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clin Exp Immunol. 2015;179:363–77.PubMedPubMedCentralGoogle Scholar
  54. 54.
    • Reese AT, Cho EH, Klitzman B, Nichols SP, Wisniewski NA, Villa MM, Durand HK. Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut. Elife. 2018;7. This article describes gut redox potential changes with antibiotics.
  55. 55.
    Van Itallie CM, Anderson JM. Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol 2014, 36, 157–165.Google Scholar
  56. 56.
    Hansson GC. Role of mucus layers in gut infection and inflammation. Curr Opin Microbiol. 2012;15(1):57–62.Google Scholar
  57. 57.
    Yang Y, Jobin C. Novel insights into microbiome in colitis and colorectal cancer. Curr Opin Gastroenterol. 2017;33:422–7.PubMedPubMedCentralGoogle Scholar
  58. 58.
    •• Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, et al. Adenoma-linked barrier defects and microbial products drive il-23/il-17-mediated tumour growth. Nature. 2012;491:254–8 This article elegantly describes how defective epithelial barrier allows adenoma development by microbial products.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Salcedo R, Worschech A, Cardone M, Jones Y, Gyulai Z, Dai RM, et al. MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J Exp Med. 2010;207:1625–36.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Hinoi T, Akyol A, Theisen BK, Ferguson DO, Greenson JK, Williams BO, et al. Mouse model of colonic adenoma-carcinoma progression based on somatic apc inactivation. Cancer Res. 2007;67:9721–30.PubMedGoogle Scholar
  61. 61.
    Rakoff-Nahoum S, Medzhitov R. Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science. 2007;317:124–7.PubMedGoogle Scholar
  62. 62.
    Tanaka T, Kohno H, Suzuki R, Hata K, Sugie S, Niho N, et al. Dextran sodium sulfate strongly promotes colorectal carcinogenesis in apc(min/+) mice: inflammatory stimuli by dextran sodium sulfate results in development of multiple colonic neoplasms. Int J Cancer. 2006;118:25–34.PubMedGoogle Scholar
  63. 63.
    Tanaka Y, Ito S, Isobe K. Vancomycin-sensitive bacteria trigger development of colitis-associated colon cancer by attracting neutrophils. Sci Rep. 2016;6:23920.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Okamoto R, Watanabe M. Role of epithelial cells in the pathogenesis and treatment of inflammatory bowel disease. J Gastroenterol. 2016;51:11–21.PubMedGoogle Scholar
  65. 65.
    De Arcangelis A, Hamade H, Alpy F, Normand S, Bruyere E, Lefebvre O, et al. Hemidesmosome integrity protects the colon against colitis and colorectal cancer. Gut. 2017;66:1748–60.PubMedGoogle Scholar
  66. 66.
    Hammer AM, Morris NL, Earley ZM, Choudhry MA. The first line of defense: the effects of alcohol on post-burn intestinal barrier, immune cells, and microbiome. Alcohol Res. 2015;37:209–22.Google Scholar
  67. 67.
    Wenzel UA, Magnusson MK, Rydstrom A, Jonstrand C, Hengst J, Johansson ME, et al. Spontaneous colitis in muc2-deficient mice reflects clinical and cellular features of active ulcerative colitis. PLoS One. 2014;9:e100217.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Bergstrom K, Liu X, Zhao Y, Gao N, Wu Q, Song K, et al. Defective intestinal mucin-type o-glycosylation causes spontaneous colitis-associated cancer in mice. Gastroenterology. 2016;151:152–164.e111.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167:1339–1353.e1321.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Morampudi V, Dalwadi U, Bhinder G, Sham HP, Gill SK, Chan J, et al. The goblet cell-derived mediator RELM-beta drives spontaneous colitis in muc2-deficient mice by promoting commensal microbial dysbiosis. Mucosal Immunol. 2016;9:1218–33.PubMedGoogle Scholar
  71. 71.
    Das S, Rachagani S, Sheinin Y, Smith LM, Gurumurthy CB, Roy HK, et al. Mice deficient in muc4 are resistant to experimental colitis and colitis-associated colorectal cancer. Oncogene. 2016;35:2645–54.PubMedGoogle Scholar
  72. 72.
    Fre S, Bardin A, Robine S, Louvard D. Notch signaling in intestinal homeostasis across species: the cases of drosophila, zebrafish and the mouse. Exp Cell Res. 2011;317:2740–7.PubMedGoogle Scholar
  73. 73.
    Crosnier C, Vargesson N, Gschmeissner S, Ariza-McNaughton L, Morrison A, Lewis J. Delta-notch signalling controls commitment to a secretory fate in the zebrafish intestine. Development. 2005;132:1093–104.PubMedGoogle Scholar
  74. 74.
    Yuan X, Wu H, Xu H, Xiong H, Chu Q, Yu S, et al. Notch signaling: an emerging therapeutic target for cancer treatment. Cancer Lett. 2015;369:20–7.PubMedGoogle Scholar
  75. 75.
    Shang Y, Smith S, Hu X. Role of notch signaling in regulating innate immunity and inflammation in health and disease. Protein Cell. 2016;7:159–74.Google Scholar
  76. 76.
    Cheesman SE, Neal JT, Mittge E, Seredick BM, Guillemin K. Epithelial cell proliferation in the developing zebrafish intestine is regulated by the Wnt pathway and microbial signaling via MyD88. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4570–7.PubMedGoogle Scholar
  77. 77.
    Troll JV, Hamilton MK. Microbiota promote secretory cell determination in the intestinal epithelium by modulating host notch signaling. Development. 2018;145.
  78. 78.
    Wang Y, Huang D, Chen KY, Cui M, Wang W, Huang X, et al. Fucosylation deficiency in mice leads to colitis and adenocarcinoma. Gastroenterology. 2017;152:193–205.e110.PubMedGoogle Scholar
  79. 79.
    Coulombe G, Langlois A, De Palma G, Langlois MJ, McCarville JL, Gagne-Sanfacon J, et al. Shp-2 phosphatase prevents colonic inflammation by controlling secretory cell differentiation and maintaining host-microbiota homeostasis. J Cell Physiol. 2016;231:2529–40.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell. 2012;149:1578–93.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Kelly D, Mulder IE. Microbiome and immunological interactions. Nutr Rev. 2012;70(Suppl 1):S18–30.PubMedGoogle Scholar
  82. 82.
    Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13:759–71.Google Scholar
  83. 83.
    Brennan CA, Garrett WS. Gut microbiota, inflammation, and colorectal cancer. Annu Rev Microbiol. 2016;70:395–411.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Okugawa Y, Toiyama Y, Kusunoki M, Goel A. Re: Cumulative burden of inflammation predicts colorectal neoplasia risk in ulcerative colitis: a large single-centre study. Gut. 2018.
  85. 85.
    Bonnet M, Buc E, Sauvanet P, Darcha C, Dubois D, Pereira B, et al. Colonization of the human gut by e. coli and colorectal cancer risk. Clin Cancer Res. 2014;20:859–67.PubMedGoogle Scholar
  86. 86.
    Shen XJ, Rawls JF, Randall T, Burcal L, Mpande CN, Jenkins N, et al. Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes. 2010;1:138–47.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012;338:120–3.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Arthur JC, Gharaibeh RZ, Muhlbauer M, Perez-Chanona E, Uronis JM, McCafferty J, et al. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat Commun. 2014;5:4724.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Abreu MT, Peek RM Jr. Gastrointestinal malignancy and the microbiome. Gastroenterology. 2014;146:1534–1546.e1533.PubMedPubMedCentralGoogle Scholar
  90. 90.
    DiDonato JA, Mercurio F, Karin M. Nf-kappab and the link between inflammation and cancer. Immunol Rev. 2012;246:379–400.PubMedGoogle Scholar
  91. 91.
    Ruiz PA, Shkoda A, Kim SC, Sartor RB, Haller D. Il-10 gene-deficient mice lack tgf-beta/smad-mediated tlr2 degradation and fail to inhibit proinflammatory gene expression in intestinal epithelial cells under conditions of chronic inflammation. Ann N Y Acad Sci. 2006;1072:389–94.PubMedGoogle Scholar
  92. 92.
    Haller D, Holt L, Kim SC, Schwabe RF, Sartor RB, Jobin C. Transforming growth factor-beta 1 inhibits non-pathogenic gram negative bacteria-induced NF-kappa b recruitment to the interleukin-6 gene promoter in intestinal epithelial cells through modulation of histone acetylation. J Biol Chem. 2003;278:23851–60.PubMedGoogle Scholar
  93. 93.
    Yu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting stat3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014;14:736–46.PubMedGoogle Scholar
  94. 94.
    •• Dejea CM, Fathi P, Craig JM. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science. 2018;359:592–7. This article emphasizes the role of Bacteroides fragilis in the colon tumorigenesis as a component of the driver bacterium. Google Scholar
  95. 95.
    •• Chung L, Thiele Orberg E, Geis AL, Chan JL, Fu K, DeStefano Shields CE, et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe. 2018;23:203–214.e205 This article emphasizes the role of Bacteroides fragilis in the colon tumorigenesis as a component of the driver bacterium.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM, Lazarev MG, et al. The bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis. 2015;60:208–15.PubMedGoogle Scholar
  97. 97.
    Thiele Orberg E, Fan H, Tam AJ, Dejea CM, Destefano Shields CE, Wu S, et al. The myeloid immune signature of enterotoxigenic bacteroides fragilis-induced murine colon tumorigenesis. Mucosal Immunol. 2017;10:421–33.PubMedGoogle Scholar
  98. 98.
    Ahmed I, Chandrakesan P, Tawfik O, Xia L, Anant S, Umar S. Critical roles of notch and Wnt/beta-catenin pathways in the regulation of hyperplasia and/or colitis in response to bacterial infection. Infect Immun. 2012;80:3107–21.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Chandrakesan P, Ahmed I, Anwar T, Wang Y, Sarkar S, Singh P, et al. Novel changes in nf-{kappa}b activity during progression and regression phases of hyperplasia: role of mek, erk, and p38. J Biol Chem. 2010;285:33485–98.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Barthold SW, Jonas AM. Morphogenesis of early 1, 2-dimethylhydrazine-induced lesions and latent period reduction of colon carcinogenesis in mice by a variant of citrobacter freundii. Cancer Res. 1977;37:4352–60.PubMedGoogle Scholar
  101. 101.
    Newman JV, Kosaka T, Sheppard BJ, Fox JG, Schauer DB. Bacterial infection promotes colon tumorigenesis in apc(min/+) mice. J Infect Dis. 2001;184:227–30.PubMedGoogle Scholar
  102. 102.
    Liu Z, Man SM, Zhu Q, Vogel P, Frase S, Fukui Y, et al. Dock2 confers immunity and intestinal colonization resistance to citrobacter rodentium infection. Sci Rep. 2016;6:27814.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Kasai C, Sugimoto K, Moritani I, Tanaka J, Oya Y, Inoue H, et al. Comparison of human gut microbiota in control subjects and patients with colorectal carcinoma in adenoma: terminal restriction fragment length polymorphism and next-generation sequencing analyses. Oncol Rep. 2016;35:325–33.PubMedGoogle Scholar
  104. 104.
    Yu J, Chen Y, Fu X, Zhou X, Peng Y, Shi L, et al. Invasive fusobacterium nucleatum may play a role in the carcinogenesis of proximal colon cancer through the serrated neoplasia pathway. Int J Cancer. 2016;139:1318–26.PubMedGoogle Scholar
  105. 105.
    Li YY, Ge QX, Cao J, Zhou YJ, Du YL, Shen B, et al. Association of fusobacterium nucleatum infection with colorectal cancer in Chinese patients. World J Gastroenterol. 2016;22:3227–33.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Wei Z, Cao S, Liu S, Yao Z, Sun T, Li Y, et al. Could gut microbiota serve as prognostic biomarker associated with colorectal cancer patients' survival? A pilot study on relevant mechanism. Oncotarget. 2016;7:46158–72.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Mima K, Nishihara R, Qian ZR, Cao Y, Sukawa Y, Nowak JA, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut. 2016;65:1973–80.PubMedGoogle Scholar
  108. 108.
    Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14:207–15.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Yang Y, Weng W, Peng J, Hong L, Yang L, Toiyama Y, et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-kappab, and up-regulating expression of microrna-21. Gastroenterology. 2017;152:851–866.e824.PubMedGoogle Scholar
  110. 110.
    Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating e-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14:195–206.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J, Gamliel M, et al. Binding of the fap2 protein of fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 2015;42:344–55.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Tjalsma H, Boleij A, Marchesi JR, Dutilh BE. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol. 2012;10:575–82.PubMedGoogle Scholar
  113. 113.
    Gao Z, Guo B, Gao R, Zhu Q, Qin H. Microbiota disbiosis is associated with colorectal cancer. Front Microbiol. 2015;6:20.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Raskov H, Burcharth J, Pommergaard HC. Linking gut microbiota to colorectal cancer. J Cancer. 2017;8:3378–95.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Geng J, Song Q, Tang X, Liang X, Fan H, Peng H, et al. Co-occurrence of driver and passenger bacteria in human colorectal cancer. Gut Pathog. 2014;6:26.Google Scholar
  116. 116.
    Marchesi JR, Dutilh BE, Hall N, Peters WH, Roelofs R, Boleij A, et al. Towards the human colorectal cancer microbiome. PLoS One. 2011;6:e20447.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, et al. Genomic analysis identifies association of fusobacterium with colorectal carcinoma. Genome Res. 2012;22:292–8.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Schertzer JW, Whiteley M. Microbial communication superhighways. Cell. 2011;144:469–70.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Liu, S.; da Cunha, A.P.; Rezende, R.M.; Cialic, R.; Wei, Z.; Bry, L.; Comstock, L.E.; Gandhi, R.; Weiner, H.L. The host shapes the gut microbiota via fecal microrna. Cell Host Microbe 2016, 19, 32–43.Google Scholar
  120. 120.
    •• Yuan C, Burns MB, Subramanian S, Blekhman R. Interaction between Host MicroRNAs and the Gut Microbiota in Colorectal Cancer. mSystems. 2018;3(3). The is the first study to demonstrate that the interaction between microRNA and the gut microbiome may play a role in colorectal cancer.
  121. 121.
    Gagniere J, Raisch J, Veziant J, Barnich N, Bonnet R, Buc E, et al. Gut microbiota imbalance and colorectal cancer. World J Gastroenterol. 2016;22:501–18.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Grasso F, Frisan T. Bacterial genotoxins: merging the DNA damage response into infection biology. Biomolecules. 2015;5:1762–82.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Graillot V, Dormoy I, Dupuy J, Shay JW, Huc L, Mirey G, et al. Genotoxicity of cytolethal distending toxin (CDT) on isogenic human colorectal cell lines: potential promoting effects for colorectal carcinogenesis. Front Cell Infect Microbiol. 2016;6:34.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Wang X, Allen TD, May RJ, Lightfoot S, Houchen CW, Huycke MM. Enterococcus faecalis induces aneuploidy and tetraploidy in colonic epithelial cells through a bystander effect. Cancer Res. 2008;68:9909–17.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Elatrech I, Marzaioli V, Boukemara H, Bournier O, Neut C, Darfeuille-Michaud A, et al. Escherichia coli lf82 differentially regulates ros production and mucin expression in intestinal epithelial t84 cells: implication of nox1. Inflamm Bowel Dis. 2015;21:1018–26.PubMedGoogle Scholar
  126. 126.
    Flemer B, Lynch DB, Brown JM, Jeffery IB, Ryan FJ, Claesson MJ, et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut. 2017;66:633–43.PubMedGoogle Scholar
  127. 127.
    Liang Q, Chiu J, Chen Y, Huang Y, Higashimori A, Fang J, et al. Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer. Clin Cancer Res. 2017;23:2061–70.PubMedGoogle Scholar
  128. 128.
    Sinha R, Ahn J, Sampson JN, Shi J, Yu G, Xiong X, et al. Fecal microbiota, fecal metabolome, and colorectal cancer interrelations. PLoS One. 2016;11:e0152126.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Zhou Y, He H, Xu H, Li Y, Li Z, Du Y, et al. Association of oncogenic bacteria with colorectal cancer in South China. Oncotarget. 2016;7:80794–802.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Fukugaiti MH, Ignacio A, Fernandes MR, Ribeiro Junior U, Nakano V, Avila-Campos MJ. High occurrence of fusobacterium nucleatum and clostridium difficile in the intestinal microbiota of colorectal carcinoma patients. Braz J Microbiol. 2015;46:1135–40.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Wang EL, Qian ZR, Nakasono M, Tanahashi T, Yoshimoto K, Bando Y, et al. High expression of toll-like receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer. Br J Cancer. 2010;102:908–15.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Surgery and University of Kansas Cancer CenterUniversity of Kansas Medical CenterKansas CityUSA

Personalised recommendations