Advertisement

Current Cardiology Reports

, 21:103 | Cite as

The Assessment of Cardiac Masses by Cardiac CT and CMR Including Pre-op 3D Reconstruction and Planning

  • Stephen LiddyEmail author
  • Colin McQuade
  • Kevin P. Walsh
  • Bryan Loo
  • Orla Buckley
Cardio-Oncology (SA Francis and RB Morgan, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Cardio-Oncology

Abstract

Purpose of Review

The purpose of this review is to (1) review the recent evidence examining the use of CT and CMR in the assessment of a suspected cardiac mass, (2) summarize the typical imaging features of the most common cardiac masses, and (3) examine the latest developments in the use of three-dimensional reconstructions and models in the preoperative assessment of a cardiac mass.

Recent Findings

CMR can distinguish between tumors and non-tumor masses and between benign and malignant mass with a high degree of accuracy.

Summary

CT and CMR are complementary tools in the evaluation of cardiac masses. CMR is the preferred initial imaging modality due to its versatile imaging planes and superior tissue characterization. CT better depicts calcification and has a higher spatial resolution compared with CMR, which is of particular importance in preoperative planning. CT also offers a valuable alternative in those with contraindications to CMR. Three-dimensional reconstructions, particularly of CT datasets, are a valuable adjunct in the preoperative assessment of a cardiac mass and may allow a better appreciation of the margins of the mass and its relationship with surrounding structures. Three-dimensional printing is an emerging technology which may be of additional value in selected patients with a cardiac mass.

Keywords

Heart neoplasm Computed tomography Magnetic resonance imaging Imaging Three-dimensional 

Notes

Compliance with Ethical Standards

Conflict of Interest

Stephen Liddy, Colin McQuade, Kevin P. Walsh, Bryan Loo, and Orla Buckley declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Lam KY, Dickens P, Chan ACL. Tumors of the heart: a 20-year experience with a review of 12 485 consecutive autopsies. Arch Pathol Lab Med. 1993.Oct;117(10):1027-31.Google Scholar
  2. 2.
    Sütsch G, Jenni R, von Segesser L, Schneider J. Heart tumors: incidence, distribution, diagnosis. Exemplified by 20,305 echocardiographies. Schweiz Med Wochenschr. 1991.Apr;121(17):621–9.Google Scholar
  3. 3.
    Mc Allister HA. Primary tumors and cysts of the heart and pericardium. Curr Probl Cardiol. 1979;4:1–51.  https://doi.org/10.1016/0146-2806(79)90008-2.CrossRefGoogle Scholar
  4. 4.
    Elbardissi AW, Dearani JA, Daly RC, Mullany CJ, Orszulak TA, Puga FJ, et al. Survival after resection of primary cardiac tumors: a 48-year experience. Circulation. 2008;118:S7–S15.  https://doi.org/10.1161/CIRCULATIONAHA.107.783126.CrossRefPubMedGoogle Scholar
  5. 5.
    Roberts WC. Primary and secondary neoplasms of the heart. Am J Cardiol. 1997;80:671–82.  https://doi.org/10.1016/S0002-9149(97)00587-0.CrossRefPubMedGoogle Scholar
  6. 6.
    Taguchi S. Comprehensive review of the epidemiology and treatments for malignant adult cardiac tumors. Gen Thorac Cardiovasc Surg. 2018;66:257–62. https://doi.org/10.1007/s11748-018-0912-3.CrossRefPubMedGoogle Scholar
  7. 7.
    Junttila MJ, Fishman JE, Lopera GA, Pattany PM, Velazquez DL, Williams AR, et al. Safety of serial MRI in patients with implantable cardioverter defibrillators. Heart. 2011;97:1852–6.  https://doi.org/10.1136/heartjnl-2011-300153.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kakouros N, Giles J, Crundwell NB, McWilliams ET. The utility of cardiac CT beyond the assessment of suspected coronary artery disease. Clin Radiol. 2012 Jul;67(7):695-708.  https://doi.org/10.1016/j.crad.2011.11.011.CrossRefGoogle Scholar
  9. 9.
    Achenbach S, Kondo T. Technical advances in cardiac CT. Cardiol Clin. 2012;30:1–8.  https://doi.org/10.1016/j.ccl.2011.11.002.CrossRefPubMedGoogle Scholar
  10. 10.
    Cody DD, Mahesh M. AAPM/RSNA physics tutorial for residents: technologic advances in multidetector CT with a focus on cardiac imaging. Radiographics. 2007;27:1829–37.  https://doi.org/10.1148/rg.276075120.CrossRefPubMedGoogle Scholar
  11. 11.
    Yin WH, Lu B, Li N, Han L, Hou ZH, Wu RZ, et al. Iterative reconstruction to preserve image quality and diagnostic accuracy at reduced radiation dose in coronary CT angiography: an intraindividual comparison. JACC Cardiovasc Imaging. 2013;6:1239–49.  https://doi.org/10.1016/j.jcmg.2013.08.008.CrossRefPubMedGoogle Scholar
  12. 12.
    Fuchs TA, Stehli J, Bull S, Dougoud S, Clerc OF, Herzog BA, et al. Coronary computed tomography angiography with model-based iterative reconstruction using a radiation exposure similar to chest X-ray examination. Eur Heart J. 2014;35:1131–6.  https://doi.org/10.1093/eurheartj/ehu053.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    • Kassi M, Polsani V, Schutt RC, Wong S, Nabi F, Reardon MJ, et al. Differentiating benign from malignant cardiac tumors with cardiac magnetic resonance imaging. J Thorac Cardiovasc Surg. 2019;157:19121922.e2.  https://doi.org/10.1016/j.jtcvs.2018.09.057. This study represents one of the largest reported experiences, and the largest prospective cohort study, evaluating the utility of contemporary CMR is differentiating benign and malignant cardiac tumors.CrossRefPubMedGoogle Scholar
  14. 14.
    Patel RD, Lim RP, Axel L, Srichai MB. Diagnostic utility of cardiac MRI in clinical evaluation of cardiac masses with histopathological correlation. J Cardiovasc Magn Reson. 2013;14.  https://doi.org/10.1186/1532-429x-14-s1-p298.
  15. 15.
    Tumma R, Dong W, Wang J, Litt H, Han Y. Evaluation of cardiac masses by CMR—strengths and pitfalls: a tertiary center experience. Int J Cardiovasc Imaging. 2016;32:913–20.  https://doi.org/10.1007/s10554-016-0845-9.CrossRefPubMedGoogle Scholar
  16. 16.
    Patel R, Lim RP, Saric M, Nayar A, Babb J, Ettel M, et al. Diagnostic performance of cardiac magnetic resonance imaging and echocardiography in evaluation of cardiac and Paracardiac masses. Am J Cardiol. 2016;117:135–40.  https://doi.org/10.1016/j.amjcard.2015.10.014.CrossRefPubMedGoogle Scholar
  17. 17.
    Rathi VK, Czajka AT, Thompson DV, Doyle M, Tewatia T, Yamrozik J, et al. Can cardiovascular MRI be used to more definitively characterize cardiac masses initially identified using echocardiography? Echocardiography. 2018;35:735–42.CrossRefGoogle Scholar
  18. 18.
    Grebenc ML, Rosado de Christenson ML, Burke AP, Green CE, Galvin JR. Primary cardiac and pericardial neoplasms: radiologic-pathologic correlation. RadioGraphics. 2013;20:1073–103.  https://doi.org/10.1148/radiographics.20.4.g00jl081073.CrossRefGoogle Scholar
  19. 19.
    Carney JA. Differences between nonfamilial and familial cardiac myxoma. Am J Surg Pathol. 1985;9:53–5.  https://doi.org/10.1097/00000478-198501000-00009.CrossRefPubMedGoogle Scholar
  20. 20.
  21. 21.
    Colin GC, Gerber BL, Amzulescu M, Bogaert J. Cardiac myxoma: a contemporary multimodality imaging review. Int J Cardiovasc Imaging. 2018;34:1789–808.  https://doi.org/10.1007/s10554-018-1396-z.CrossRefPubMedGoogle Scholar
  22. 22.
    Wei K, Guo HW, Fan SY, Sun XG, Hu SS. Clinical features and surgical results of cardiac myxoma in Carney complex. J Card Surg. 2019;34:14–9.  https://doi.org/10.1111/jocs.13980.CrossRefPubMedGoogle Scholar
  23. 23.
    Hananouchi GI, Goff WB. Cardiac lipoma: six-year follow-up with MRI characteristics, and a review of the literature. Magn Reson Imaging. 1990;8:825–8.  https://doi.org/10.1016/0730-725X(90)90021-S.CrossRefPubMedGoogle Scholar
  24. 24.
    Heyer CM, Kagel T, Lemburg SP, Bauer TT, Nicolas V. Lipomatous hypertrophy of the interatrial septum: a prospective study of incidence, imaging findings, and clinical symptoms. Chest. 2003;124:2068–73.  https://doi.org/10.1378/chest.124.6.2068.CrossRefPubMedGoogle Scholar
  25. 25.
    Fan CM, Fischman AJ, Kwek BM, Abbara S, Aquino SL. Lipomatous hypertrophy of the interatrial septum: increased uptake on FDG PET. Am J Roentgenol. 2005;184:339–42.  https://doi.org/10.2214/ajr.184.1.01840339.CrossRefGoogle Scholar
  26. 26.
    Tazelaar HD, Locke TJ, McGregor CGA. Pathology of surgically excised primary cardiac tumors. Mayo Clin Proc. 1992;67:957–65.  https://doi.org/10.1016/S0025-6196(12)60926-4.CrossRefPubMedGoogle Scholar
  27. 27.
    Georghiou GP, Vidne BA, Sahar G, Sharoni E, Fuks A, Porat E. Primary cardiac valve tumors. Asian Cardiovasc Thorac Ann. 2010;18:226–8.  https://doi.org/10.1177/0218492310367522.CrossRefPubMedGoogle Scholar
  28. 28.
    Howard RA, Aldea GS, Shapira OM, Kasznica JM, Davidoff R. Papillary fibroelastoma: increasing recognition of a surgical disease. Ann Thorac Surg. 1999;68:1881–5.  https://doi.org/10.1016/S0003-4975(99)00860-7.CrossRefPubMedGoogle Scholar
  29. 29.
    Carino D, Nicolini F, Molardi A, Indira Dadamo C, Gherli T. Unusual Locations for Cardiac Papillary Fibroelastomas. J Heart Valve Dis. 2017 Mar;26(2):226-230.Google Scholar
  30. 30.
    Motwani M, Kidambi A, Herzog BA, Uddin A, Greenwood JP, Plein S. MR imaging of cardiac tumors and masses: a review of methods and clinical applications. Radiology. 2013;268:26–43.CrossRefGoogle Scholar
  31. 31.
    Ying L, Lin R, Gao Z, Qi J, Zhang Z, Gu W. Primary cardiac tumors in children: a center’s experience. J Cardiothorac Surg. 2016;11:52.  https://doi.org/10.1186/s13019-016-0448-5.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Delmo Walter EM, Javier MF, Sander F, Hartmann B, Ekkernkamp A, Hetzer R. Primary cardiac tumors in infants and children: surgical strategy and long-term outcome. Ann Thorac Surg. 2016;102:2062–9.  https://doi.org/10.1016/j.athoracsur.2016.04.057.CrossRefPubMedGoogle Scholar
  33. 33.
    Beghetti M, Gow RM, Haney I, Mawson J, Williams WG, Freedom RM. Pediatric primary benign cardiac tumors: a 15-year review. Am Heart J. 1997;134:1107–14.  https://doi.org/10.1016/S0002-8703(97)70032-2.CrossRefPubMedGoogle Scholar
  34. 34.
    Bosi G, Lintermans JP, Pellegrino PA, Svaluto-Moreolo G, Vliers A. The natural history of cardiac rhabdomyoma with and without tuberous sclerosis. Acta Paediatr Int J Paediatr. 1996;85:928–31.  https://doi.org/10.1111/j.1651-2227.1996.tb14188.x.CrossRefGoogle Scholar
  35. 35.
    Restrepo CS, Largoza A, Lemos DF, Diethelm L, Koshy P, Castillo P, et al. CT and MR imaging findings of benign cardiac tumors. Curr Probl Diagn Radiol. 2005;34:12–21.  https://doi.org/10.1067/j.cpradiol.2004.10.002.CrossRefPubMedGoogle Scholar
  36. 36.
    Kiaffas MG, Powell AJ, Geva T. Magnetic resonance imaging evaluation of cardiac tumor characteristics in infants and children. Am J Cardiol. 2002;89:1229–33.  https://doi.org/10.1016/S0002-9149(02)02314-7.CrossRefPubMedGoogle Scholar
  37. 37.
    Berkenblit R, Spindola-Franco H, Frater RWM, Fish BB, Glickstein JS. MRI in the evaluation and management of a newborn infant with cardiac rhabdomyoma. Ann Thorac Surg. 1997;63:1475–7.  https://doi.org/10.1016/S0003-4975(97)00113-6.CrossRefPubMedGoogle Scholar
  38. 38.
    Smythe JF, Dyck JD, Smallhorn JF, Freedom RM. Natural history of cardiac rhabdomyoma in infancy and childhood. Am J Cardiol. 1990;66:1247–9.  https://doi.org/10.1016/0002-9149(90)91109-J.CrossRefPubMedGoogle Scholar
  39. 39.
    Burke A, Tavora F. The 2015 WHO classification of tumors of the heart and pericardium. J Thorac Oncol. 2016;11:441–52.  https://doi.org/10.1016/j.jtho.2015.11.009.CrossRefPubMedGoogle Scholar
  40. 40.
    Nwachukwu H, Li A, Nair V, Nguyen E, David TE, Butany J. Cardiac fibroma in adults. Cardiovasc Pathol. 2011;20:e146–52.  https://doi.org/10.1016/j.carpath.2010.08.006.CrossRefPubMedGoogle Scholar
  41. 41.
    de León GA, Zaeri N, Donner RM, Karmazin N. Cerebral rhinocele, hydrocephalus, and cleft lip and palate in infants with cardiac fibroma. J Neurol Sci. 1990;99:27–36.  https://doi.org/10.1016/0022-510X(90)90196-T.CrossRefPubMedGoogle Scholar
  42. 42.
    Hoffmann U, Globits S, Schima W, Loewe C, Puig S, Oberhuber G, et al. Usefulness of magnetic resonance imaging of cardiac and paracardiac masses. Am J Cardiol. 2003;92:890–5.  https://doi.org/10.1016/S0002-9149(03)00911-1.CrossRefPubMedGoogle Scholar
  43. 43.
    Luna A, Ribes R, Caro P, Vida J, Erasmus JJ. Evaluation of cardiac tumors with magnetic resonance imaging. Eur Radiol. 2005;15:1446–55.  https://doi.org/10.1007/s00330-004-2603-y.CrossRefPubMedGoogle Scholar
  44. 44.
    Li W, Teng P, Xu H, Ma L, Ni Y. Cardiac hemangioma: a comprehensive analysis of 200 cases. Ann Thorac Surg. 2015;99:2246–52.  https://doi.org/10.1016/j.athoracsur.2015.02.064.CrossRefPubMedGoogle Scholar
  45. 45.
    Oshima H, Hara M, Kono T, Shibamoto Y, Mishima A, Akita S. Cardiac hemangioma of the left atrial appendage: CT and MR findings. J Thorac Imaging. 2003;18:204–6.  https://doi.org/10.1097/00005382-200307000-00012.CrossRefPubMedGoogle Scholar
  46. 46.
    Truong PT, Jones SO, Martens B, Alexander C, Paquette M, Joe H, et al. Treatment and outcomes in adult patients with primary cardiac sarcoma: the British Columbia Cancer Agency experience. Ann Surg Oncol. 2009;16:3358–65.  https://doi.org/10.1245/s10434-009-0734-8.CrossRefPubMedGoogle Scholar
  47. 47.
    Donsbeck AV, Ranchere D, Coindre JM, Le Gall F, Cordier JF, Loire R. Primary cardiac sarcomas: an immunohistochemical and grading study with long-term follow-up of 24 cases. Histopathology. 1999;34:295–304.  https://doi.org/10.1046/j.1365-2559.1999.00636.x.CrossRefPubMedGoogle Scholar
  48. 48.
    Bakaeen FG, Reardon MJ, Coselli JS, Miller CC, Howell JF, Lawrie GM, et al. Surgical outcome in 85 patients with primary cardiac tumors. Am J Surg. 2003;186:641–7.  https://doi.org/10.1016/j.amjsurg.2003.08.004.CrossRefPubMedGoogle Scholar
  49. 49.
    Hamidi M, Moody JS, Weigel TL, Kozak KR. Primary cardiac sarcoma. Ann Thorac Surg. 2010;90:176–81.  https://doi.org/10.1016/j.athoracsur.2010.03.065.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Simpson L, Kumar SK, Okuno SH, Schaff HV, Porrata LF, Buckner JC, et al. Malignant primary cardiac tumors: review of a single institution experience. Cancer. 2008;112:2440–6.  https://doi.org/10.1002/cncr.23459.CrossRefPubMedGoogle Scholar
  51. 51.
    Perchinsky MJ, Lichtenstein SV, Tyers GFO. Primary cardiac tumors: forty years’ experience with 71 patients. Cancer. 1997;79:1809–15.  https://doi.org/10.1002/(SICI)1097-0142(19970501)79:9<1809::AID-CNCR25>3.0.CO;2-0.CrossRefPubMedGoogle Scholar
  52. 52.
    Buckley O, Madan R, Kwong R, Rybicki FJ, Hunsaker A. Cardiac masses, part 2: key imaging features for diagnosis and surgical planning. Am J Roentgenol. 2011;197:W842–51.  https://doi.org/10.2214/AJR.11.6903.CrossRefGoogle Scholar
  53. 53.
    Burnside N, MacGowan SW. Malignant primary cardiac tumours. Interact Cardiovasc Thorac Surg. 2012;15:1004–6.  https://doi.org/10.1093/icvts/ivs350.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Shapiro LM. General cardiology: cardiac tumours: diagnosis and management. Heart. 2002;85:218–22.  https://doi.org/10.1136/heart.85.2.218.CrossRefGoogle Scholar
  55. 55.
    Villacampa VM, Villarreal M, Ros LH, Álvarez R, Cózar M, Fuertes MI. Cardiac rhabdomyosarcoma: diagnosis by MR imaging. Eur Radiol. 1999;9:634–7.  https://doi.org/10.1007/s003300050723.CrossRefPubMedGoogle Scholar
  56. 56.
    Burke A, Jeudy J, Virmani R. Cardiac tumours: an update. Heart. 2008;94:117–23.  https://doi.org/10.1136/hrt.2005.078576.CrossRefPubMedGoogle Scholar
  57. 57.
    Holladay AO, Siegel RJ, Schwarfz DA. Cardiac malignant lymphoma in acquired immune deficiency syndrome. Cancer. 1992;70:2203–7.  https://doi.org/10.1002/1097-0142(19921015)70:8<2203::AID-CNCR2820700831>3.0.CO;2-6.CrossRefPubMedGoogle Scholar
  58. 58.
    Ceresoli GL, Ferreri AJM, Bucci E, Ripa C, Ponzoni M, Villa E. Primary cardiac lymphoma in immunocompetent patients: diagnostic and therapeutic management. Cancer. 1997;80:1497–506.  https://doi.org/10.1002/(SICI)1097-0142(19971015)80:8<1497::AID-CNCR18>3.0.CO;2-0.CrossRefPubMedGoogle Scholar
  59. 59.
    Perrone MA, Intorcia A, Morgagni R, Marchei M, Sergi D, Pugliese L, et al. Primary cardiac lymphoma: the role of multimodality imaging. J Cardiovasc Med. 2018:1.  https://doi.org/10.2459/JCM.0000000000000668.
  60. 60.
    Coulier B, Colin GC, Tourmous H, Floris N, Van Eeckhout P, Scavée C. Imaging features of primary cardiac lymphoma. Diagn Interv Imaging. 2018;99:115–7.  https://doi.org/10.1016/j.diii.2017.05.013.CrossRefPubMedGoogle Scholar
  61. 61.
    Petrich A, Cho SI, Billett H. Primary cardiac lymphoma: an analysis of presentation, treatment, and outcome patterns. Cancer. 2011;117:581–9.  https://doi.org/10.1002/cncr.25444.CrossRefPubMedGoogle Scholar
  62. 62.
    Jeudy J, Kirsch J, Tavora F, Burke AP, Franks TJ, Mohammed TL, et al. From the radiologic pathology archives: cardiac lymphoma: radiologic-pathologic correlation. RadioGraphics. 2012;32:1369–80.  https://doi.org/10.1148/rg.325115126.CrossRefPubMedGoogle Scholar
  63. 63.
    Carter BW, Wu CC, Khorashadi L, Godoy MCB, De Groot PM, Abbott GF, et al. Multimodality imaging of cardiothoracic lymphoma. Eur J Radiol. 2014;83:1470–82.  https://doi.org/10.1016/j.ejrad.2014.05.018.CrossRefPubMedGoogle Scholar
  64. 64.
    Dorsay TA, Ho VB, Rovira MJ, Armstrong MA, Brissette MD. Primary cardiac lymphoma: CT and MR findings. J Comput Assist Tomogr. 1993;17:978–81.  https://doi.org/10.1097/00004728-199311000-00025.CrossRefPubMedGoogle Scholar
  65. 65.
    Butany J, Nair V, Naseemuddin A, Nair GM, Catton C, Yau T. Cardiac tumours: diagnosis and management. Lancet Oncol. 2005;6:219–28.  https://doi.org/10.1016/S1470-2045(05)70093-0.CrossRefPubMedGoogle Scholar
  66. 66.
    Abraham KP, Reddy V, Gattuso P. Neoplasms metastatic to the heart: review of 3314 consecutive autopsies. bAm J Cardiovasc Pathol 1990;3(3):195-8.Google Scholar
  67. 67.
    Mousseaux E, Meunier P, Azancott S, Dubayle P, Gaux JC. Cardiac metastatic melanoma investigated by magnetic resonance imaging. Magn Reson Imaging. 1998;16:91–5.  https://doi.org/10.1016/S0730-725X(97)00200-2.CrossRefPubMedGoogle Scholar
  68. 68.
    Lichtenberger JP, Reynolds DA, Keung J, Keung E, Carter BW. Metastasis to the heart: a radiologic approach to diagnosis with pathologic correlation. Am J Roentgenol. 2016;207:764–72.  https://doi.org/10.2214/AJR.16.16148.CrossRefGoogle Scholar
  69. 69.
    Kim EY, Choe YH, Sung K, Park SW, Kim JH, Ko YH. Multidetector CT and MR imaging of cardiac tumors. Korean J Radiol. 2009;10:164.  https://doi.org/10.3348/kjr.2009.10.2.164.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Crean AM, Juli C. Diagnosis of metastatic melanoma to the heart with an intrinsic contrast approach using melanin inversion recovery imaging. J Comput Assist Tomogr. 2007;31:924–30.  https://doi.org/10.1097/RCT.0b013e31804b213b.CrossRefPubMedGoogle Scholar
  71. 71.
    Kim DH, Il Choi S, Choi JA, Chang HJ, Choi DJ, Lim C, et al. Various findings of cardiac thrombi on MDCT and MRI. J Comput Assist Tomogr. 2006;30:572–7.  https://doi.org/10.1097/00004728-200607000-00004.CrossRefPubMedGoogle Scholar
  72. 72.
    Hur J, Kim YJ, Lee HJ, Nam JE, Ha JW, Heo JH, et al. Dual-enhanced cardiac CT for detection of left atrial appendage thrombus in patients with stroke: a prospective comparison study with transesophageal echocardiography. Stroke. 2011;42:2471–7.  https://doi.org/10.1161/STROKEAHA.110.611293.CrossRefPubMedGoogle Scholar
  73. 73.
    Hur J, Pak HN, Kim YJ, Lee HJ, Chang HJ, Hong YJ, et al. Dual-enhancement cardiac computed tomography for assessing left atrial thrombus and pulmonary veins before radiofrequency catheter ablation for atrial fibrillation. Am J Cardiol. 2013;112:238–44.  https://doi.org/10.1016/j.amjcard.2013.03.018.CrossRefPubMedGoogle Scholar
  74. 74.
    Zou H, Zhang Y, Tong J, Liu Z. Multidetector computed tomography for detecting left atrial/left atrial appendage thrombus: a meta-analysis. Intern Med J. 2015;45:1044–53.  https://doi.org/10.1111/imj.12862.CrossRefPubMedGoogle Scholar
  75. 75.
    • Chen J, Zhang H, Zhu D, Wang Y, Byanju S, Liao M. Cardiac MRI for detecting left atrial/left atrial appendage thrombus in patients with atrial fibrillation : meta-analysis and systematic review. Herz. 2018.  https://doi.org/10.1007/s00059-017-4676-9. This study represents a comprehensive systematic review and meta-analysis evaluating contemporary CMR in detecting left atrial appendage thrombus and compares the accuracy of various imaging sequences.CrossRefGoogle Scholar
  76. 76.
    Scheffel H, Baumueller S, Stolzmann P, Leschka S, Plass A, Alkadhi H, et al. Atrial myxomas and thrombi: comparison of imaging features on CT. Am J Roentgenol. 2009;192:639–45.  https://doi.org/10.2214/AJR.08.1694.CrossRefGoogle Scholar
  77. 77.
    Maini R, Gadiraju TV, Jabbar A, Danrad R, Sweeney A. Cardiac MRI as a useful tool to differentiate tumor and thrombus. Int. J. Cardiovasc. Imaging. 2017;33:1795–6.  https://doi.org/10.1007/s10554-017-1172-5.CrossRefPubMedGoogle Scholar
  78. 78.
    Bittencourt MS, Achenbach S, Marwan M, Seltmann M, Muschiol G, Ropers D, et al. Left ventricular thrombus attenuation characterization in cardiac computed tomography angiography. J Cardiovasc Comput Tomogr. 2012;6:121–6.  https://doi.org/10.1016/j.jcct.2011.12.006.CrossRefPubMedGoogle Scholar
  79. 79.
    Paydarfar D, Krieger D, Dib N, Blair RH, Pastore JO, Stetz JJ, et al. In vivo magnetic resonance imaging and surgical histopathology of intracardiac masses: distinct features of subacute thrombi. Cardiology. 2001;95:40–7.  https://doi.org/10.1159/000047342.CrossRefPubMedGoogle Scholar
  80. 80.
    Kligerman S. Imaging of pericardial disease. Radiol Clin N Am. 2019;57:179–99.  https://doi.org/10.1016/j.rcl.2018.09.001.CrossRefPubMedGoogle Scholar
  81. 81.
    Fortuny E, Fernandez-Golfin C, Viliani D, Zamorano JL. Multimodality imaging in pericardial diseases. J Cardiovasc Echogr. 2012;22:1–10.  https://doi.org/10.1016/j.jcecho.2011.09.004.CrossRefGoogle Scholar
  82. 82.
    Fishman EK, Bluemke DA, Soyer P. Three-dimensional imaging: past, present and future. Diagn Interv Imaging. 2016;97:283–5.  https://doi.org/10.1016/j.diii.2016.03.001.CrossRefPubMedGoogle Scholar
  83. 83.
    Rowe SP, Johnson PT, Fishman EK. Initial experience with cinematic rendering for chest cardiovascular imaging. Br J Radiol. 2018.  https://doi.org/10.1259/bjr.20170558.
  84. 84.
    Rowe SP, Johnson PT, Fishman EK. Cinematic rendering of cardiac CT volumetric data: principles and initial observations. J Cardiovasc Comput Tomogr. 2018;12:56–9.  https://doi.org/10.1016/j.jcct.2017.11.013.CrossRefPubMedGoogle Scholar
  85. 85.
    Dappa E, Higashigaito K, Fornaro J, Leschka S, Wildermuth S, Alkadhi H. Cinematic rendering – an alternative to volume rendering for 3D computed tomography imaging. Insights Imaging. 2016;7:849–56.  https://doi.org/10.1007/s13244-016-0518-1.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Vukicevic M, Mosadegh B, Min JK, Little SH. Cardiac 3D printing and its future directions. JACC Cardiovasc Imaging. 2017;10:171–84.  https://doi.org/10.1016/j.jcmg.2016.12.001.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Otton JM, Birbara NS, Hussain T, Greil G, Foley TA, Pather N. 3D printing from cardiovascular CT: a practical guide and review. Cardiovasc Diagn Ther. 2017;7:507–26.  https://doi.org/10.21037/cdt.2017.01.12.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Yan C, Wang C, Pan X, Li S, Song H, Liu Q, Xu N, Wang J. Three dimensional printing assisted transcatheter closure of atrial septal defect with deficient posterior-inferior rim. Catheter Cardiovasc Interv. 2018 Dec 1;92(7):1309-1314. https://doi.org/10.1002/ccd.27799 CrossRefGoogle Scholar
  89. 89.
    Faganello G, Campana C, Belgrano M, Russo G, Pozzi M, Cioffi G, et al. Three dimensional printing of an atrial septal defect: is it multimodality imaging? Int. J. Cardiovasc. Imaging. 2016;32:427–8.  https://doi.org/10.1007/s10554-015-0801-0.CrossRefPubMedGoogle Scholar
  90. 90.
    Wang Z, Liu Y, Xu Y, Gao C, Chen Y, Luo H. Three-dimensional printing-guided percutaneous transcatheter closure of secundum atrial septal defect with rim deficiency: first-in-human series. Cardiol J. 2016;23:599–603.  https://doi.org/10.5603/CJ.a2016.0094.CrossRefPubMedGoogle Scholar
  91. 91.
    Chepelev L, Wake N, Ryan J, Althobaity W, Gupta A, Arribas E, et al. Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): guidelines for medical 3D printing and appropriateness for clinical scenarios. 3D Print Med. 2018;4:11.  https://doi.org/10.1186/s41205-018-0030-y.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Schmauss D, Gerber N, Sodian R. Three-dimensional printing of models for surgical planning in patients with primary cardiac tumors. J Thorac Cardiovasc Surg. 2013;145:1407–8.  https://doi.org/10.1016/j.jtcvs.2012.12.030.CrossRefPubMedGoogle Scholar
  93. 93.
    Jacobs S, Grunert R, Mohr FW, Falk V. 3D-imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study. Interact Cardiovasc Thorac Surg. 2008;7:6–9.  https://doi.org/10.1510/icvts.2007.156588.CrossRefPubMedGoogle Scholar
  94. 94.
    Al Jabbari O, Abu Saleh WK, Patel AP, Igo SR, Reardon MJ. Use of three-dimensional models to assist in the resection of malignant cardiac tumors. J Card Surg. 2016;31:581–3.  https://doi.org/10.1111/jocs.12812.CrossRefPubMedGoogle Scholar
  95. 95.
    Valverde I, Gomez G, Suarez-Mejias C, Hosseinpour A-R, Hazekamp M, Roest A, et al. 3D printed cardiovascular models for surgical planning in complex congenital heart diseases. J Cardiovasc Magn Reson. 2015;17.  https://doi.org/10.1186/1532-429x-17-s1-p196.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Stephen Liddy
    • 1
    Email author
  • Colin McQuade
    • 1
  • Kevin P. Walsh
    • 2
  • Bryan Loo
    • 3
  • Orla Buckley
    • 1
  1. 1.Department of RadiologyTallaght University HospitalDublinIreland
  2. 2.Department of CardiologyMater Misericordiae University HospitalDublinIreland
  3. 3.Department of CardiologyTallaght University HospitalDublinIreland

Personalised recommendations