Revascularization Strategies for Non-ST-Elevation Myocardial Infarction

  • Bennet George
  • Naoki Misumida
  • Khaled M. ZiadaEmail author
Management of Acute Coronary Syndromes (H Jneid, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Management of Acute Coronary Syndromes


Purpose of Review

Non-ST-elevation myocardial infarction (NSTEMI) is an urgent medical condition that requires prompt application of simultaneous pharmacologic and non-pharmacologic therapies. The variation in patient clinical characteristics coupled with the multitude of treatment modalities makes optimal and timely management challenging. This review summarizes risk stratification of patients, the role and timing of revascularization, and highlights important considerations in the revascularization approach with attention to individual patient characteristics.

Recent Findings

The early invasive management of NSTEMI has fostered a reduction in future ischemic events. Risk calculators are helpful in determining which patients should receive early invasive management. As many patients have multivessel disease, identifying the true culprit lesion can be challenging. Special attention should be given to those at the highest risk, such as diabetics, patients with renal failure, and those with left main disease.


In patients with acute coronary syndrome, the decision and mode of revascularization should carefully integrate the patient’s clinical characteristics as well as the complexity of the coronary anatomy.


Non-ST-elevation myocardial infarction Revascularization Review 


Compliance with Ethical Standards

Conflict of Interest

Bennet George, Naoki Misumida, and Khaled M. Ziada declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This review complies with all ethical standards for clinical research on human subjects. This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart Disease and Stroke Statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135(10):e146–603.CrossRefGoogle Scholar
  2. 2.
    Mehta SR, Granger CB, Boden WE, Steg PG, Bassand JP, Faxon DP, et al. Early versus delayed invasive intervention in acute coronary syndromes. N Engl J Med. 2009;360(21):2165–75.CrossRefGoogle Scholar
  3. 3.
    Fox KA, Poole-Wilson PA, Henderson RA, Clayton TC, Chamberlain DA, Shaw TR, et al. Interventional versus conservative treatment for patients with unstable angina or non-ST-elevation myocardial infarction: the British Heart Foundation RITA 3 randomised trial. Randomized intervention trial of unstable angina. Lancet. 2002;360(9335):743–51.CrossRefGoogle Scholar
  4. 4.
    Windecker S, Stortecky S, Stefanini GG, da Costa BR, Rutjes AW, Di Nisio M, et al. Revascularisation versus medical treatment in patients with stable coronary artery disease: network meta-analysis. BMJ. 2014;348:g3859.CrossRefGoogle Scholar
  5. 5.
    Palmerini T, Biondi-Zoccai G, Della Riva D, Mariani A, Genereux P, Branzi A, et al. Stent thrombosis with drug-eluting stents: is the paradigm shifting? J Am Coll Cardiol. 2013;62(21):1915–21.CrossRefGoogle Scholar
  6. 6.
    Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuelsson H, Held C, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2009;361(11):1045–57.CrossRefGoogle Scholar
  7. 7.
    Cannon CP, Braunwald E, McCabe CH, Rader DJ, Rouleau JL, Belder R, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004;350(15):1495–504.CrossRefGoogle Scholar
  8. 8.
    •• Amsterdam EA, Wenger NK, Brindis RG, Casey DE Jr, Ganiats TG, Holmes DR Jr, et al. 2014 AHA/ACC Guideline for the management of patients with non-st-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;64(24):e139–228 The AHA/ACC guidelines represents a carefully complied document detailing the knowledge base and all proven therapies with detailed explanation of the level of evidence provided by the most contemporary studies in the management of NSTEMI patients. CrossRefGoogle Scholar
  9. 9.
    Antman EM, Cohen M, Bernink PJ, McCabe CH, Horacek T, Papuchis G, et al. The TIMI risk score for unstable angina/non-ST elevation MI: a method for prognostication and therapeutic decision making. JAMA. 2000;284(7):835–42.CrossRefGoogle Scholar
  10. 10.
    Fox KA, Dabbous OH, Goldberg RJ, Pieper KS, Eagle KA, Van de Werf F, et al. Prediction of risk of death and myocardial infarction in the six months after presentation with acute coronary syndrome: prospective multinational observational study (GRACE). BMJ. 2006;333(7578):1091.CrossRefGoogle Scholar
  11. 11.
    Six AJ, Backus BE, Kelder JC. Chest pain in the emergency room: value of the HEART score. Neth Hear J. 2008;16(6):191–6.CrossRefGoogle Scholar
  12. 12.
    Backus BE, Six AJ, Kelder JC, Bosschaert MA, Mast EG, Mosterd A, et al. A prospective validation of the HEART score for chest pain patients at the emergency department. Int J Cardiol. 2013;168(3):2153–8.CrossRefGoogle Scholar
  13. 13.
    Twerenbold R, Badertscher P, Boeddinghaus J, Nestelberger T, Wildi K, Rubini Gimenez M, et al. Effect of the FDA regulatory approach on the 0/1-h algorithm for rapid diagnosis of MI. J Am Coll Cardiol. 2017;70(12):1532–4.CrossRefGoogle Scholar
  14. 14.
    Bavry AA, Kumbhani DJ, Rassi AN, Bhatt DL, Askari AT. Benefit of early invasive therapy in acute coronary syndromes: a meta-analysis of contemporary randomized clinical trials. J Am Coll Cardiol. 2006;48(7):1319–25.CrossRefGoogle Scholar
  15. 15.
    Hoenig MR, Doust JA, Aroney CN, Scott IA. Early invasive versus conservative strategies for unstable angina & non-ST-elevation myocardial infarction in the stent era. Cochrane Database Syst Rev. 2006;3:CD004815.Google Scholar
  16. 16.
    Chan PS, Patel MR, Klein LW, Krone RJ, Dehmer GJ, Kennedy K, et al. Appropriateness of percutaneous coronary intervention. JAMA. 2011;306(1):53–61.CrossRefGoogle Scholar
  17. 17.
    AMI Trends: Incidence, Detection, and Treatment 2016. Available from: Accessed 29 Jan 2019.
  18. 18.
    Montalescot G, Cayla G, Collet JP, Elhadad S, Beygui F, Le Breton H, et al. Immediate vs delayed intervention for acute coronary syndromes: a randomized clinical trial. JAMA. 2009;302(9):947–54.CrossRefGoogle Scholar
  19. 19.
    Thiele H, Rach J, Klein N, Pfeiffer D, Hartmann A, Hambrecht R, et al. Optimal timing of invasive angiography in stable non-ST-elevation myocardial infarction: the Leipzig immediate versus early and late percutaneous coronary intervention triAl in NSTEMI (LIPSIA-NSTEMI trial). Eur Heart J. 2012;33(16):2035–43.CrossRefGoogle Scholar
  20. 20.
    Milosevic A, Vasiljevic-Pokrajcic Z, Milasinovic D, Marinkovic J, Vukcevic V, Stefanovic B, et al. Immediate versus delayed invasive intervention for non-STEMI patients: the RIDDLE-NSTEMI study. JACC Cardiovasc Interv. 2016;9(6):541–9.CrossRefGoogle Scholar
  21. 21.
    Jneid H. Merits of Invasive Strategy in Diabetic Patients With Non-ST Elevation Acute Coronary Syndrome. J Am Heart Assoc. 2017;6(5):e005773.Google Scholar
  22. 22.
    Parikh SV, de Lemos JA, Jessen ME, Brilakis ES, Ohman EM, Chen AY, et al. Timing of in-hospital coronary artery bypass graft surgery for non-ST-segment elevation myocardial infarction patients results from the National Cardiovascular Data Registry ACTION registry-GWTG (acute coronary treatment and intervention outcomes network registry-get with the guidelines). JACC Cardiovasc Interv. 2010;3(4):419–27.CrossRefGoogle Scholar
  23. 23.
    Weiss ES, Chang DD, Joyce DL, Nwakanma LU, Yuh DD. Optimal timing of coronary artery bypass after acute myocardial infarction: a review of California discharge data. J Thorac Cardiovasc Surg. 2008;135(3):503–11 11 e1–3.CrossRefGoogle Scholar
  24. 24.
    Braxton JH, Hammond GL, Letsou GV, Franco KL, Kopf GS, Elefteriades JA, et al. Optimal timing of coronary artery bypass graft surgery after acute myocardial infarction. Circulation. 1995;92(9 Suppl):II66–8.CrossRefGoogle Scholar
  25. 25.
    Selinger SL, Berg R Jr, Leonard JJ, Coleman WS, DeWood MA. Surgical intervention in acute myocardial infarction. Tex Heart Inst J. 1984;11(1):44–51.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Davierwala PM, Verevkin A, Leontyev S, Misfeld M, Borger MA, Mohr FW. Does timing of coronary artery bypass surgery affect early and long-term outcomes in patients with non-ST-segment-elevation myocardial infarction? Circulation. 2015;132(8):731–40.CrossRefGoogle Scholar
  27. 27.
    Morrison DA, Sethi G, Sacks J, Henderson W, Grover F, Sedlis S, et al. Percutaneous coronary intervention versus coronary artery bypass graft surgery for patients with medically refractory myocardial ischemia and risk factors for adverse outcomes with bypass: a multicenter, randomized trial. Investigators of the Department of Veterans Affairs Cooperative Study #385, the Angina With Extremely Serious Operative Mortality Evaluation (AWESOME). J Am Coll Cardiol. 2001;38(1):143–9.CrossRefGoogle Scholar
  28. 28.
    Rodriguez A, Bernardi V, Navia J, Baldi J, Grinfeld L, Martinez J, et al. Argentine randomized study: coronary angioplasty with stenting versus coronary bypass surgery in patients with multiple-vessel disease (ERACI II): 30-day and one-year follow-up results. ERACI II investigators. J Am Coll Cardiol. 2001;37(1):51–8.CrossRefGoogle Scholar
  29. 29.
    Rana JS, Venkitachalam L, Selzer F, Mulukutla SR, Marroquin OC, Laskey WK, et al. Evolution of percutaneous coronary intervention in patients with diabetes: a report from the National Heart, Lung, and Blood Institute-sponsored PTCA (1985-1986) and Dynamic (1997-2006) Registries. Diabetes Care. 2010;33(9):1976–82.CrossRefGoogle Scholar
  30. 30.
    Venkitachalam L, Kip KE, Selzer F, Wilensky RL, Slater J, Mulukutla SR, et al. Twenty-year evolution of percutaneous coronary intervention and its impact on clinical outcomes: a report from the National Heart, Lung, and Blood Institute-sponsored, multicenter 1985-1986 PTCA and 1997-2006 Dynamic Registries. Circ Cardiovasc Interv. 2009;2(1):6–13.CrossRefGoogle Scholar
  31. 31.
    van den Brand MJ, Rensing BJ, Morel MA, Foley DP, de Valk V, Breeman A, et al. The effect of completeness of revascularization on event-free survival at one year in the ARTS trial. J Am Coll Cardiol. 2002;39(4):559–64.CrossRefGoogle Scholar
  32. 32.
    Srinivas VS, Selzer F, Wilensky RL, Holmes DR, Cohen HA, Monrad ES, et al. Completeness of revascularization for multivessel coronary artery disease and its effect on one-year outcome: a report from the NHLBI dynamic registry. J Interv Cardiol. 2007;20(5):373–80.CrossRefGoogle Scholar
  33. 33.
    Brener SJ, Murphy SA, Gibson CM, DiBattiste PM, Demopoulos LA, Cannon CP, et al. Efficacy and safety of multivessel percutaneous revascularization and tirofiban therapy in patients with acute coronary syndromes. Am J Cardiol. 2002;90(6):631–3.CrossRefGoogle Scholar
  34. 34.
    Serruys PW, Morice MC, Kappetein AP, Colombo A, Holmes DR, Mack MJ, et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med. 2009;360(10):961–72.CrossRefGoogle Scholar
  35. 35.
    Berger A, Botman KJ, MacCarthy PA, Wijns W, Bartunek J, Heyndrickx GR, et al. Long-term clinical outcome after fractional flow reserve-guided percutaneous coronary intervention in patients with multivessel disease. J Am Coll Cardiol. 2005;46(3):438–42.CrossRefGoogle Scholar
  36. 36.
    Sels JW, Tonino PA, Siebert U, Fearon WF, Van't Veer M, De Bruyne B, et al. Fractional flow reserve in unstable angina and non-ST-segment elevation myocardial infarction experience from the FAME (fractional flow reserve versus angiography for multivessel evaluation) study. JACC Cardiovasc Interv. 2011;4(11):1183–9.CrossRefGoogle Scholar
  37. 37.
    Sardella G, Lucisano L, Garbo R, Pennacchi M, Cavallo E, Stio RE, et al. Single-staged compared with multi-staged PCI in multivessel NSTEMI patients: the SMILE trial. J Am Coll Cardiol. 2016;67(3):264–72.CrossRefGoogle Scholar
  38. 38.
    Singh M, Arora R, Kodumuri V, Khosla S, Jawad E. Coronary revascularization in diabetic patients: current state of evidence. Exp Clin Cardiol. 2011;16(1):16–22.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Berry C, Tardif JC, Bourassa MG. Coronary heart disease in patients with diabetes: part II: recent advances in coronary revascularization. J Am Coll Cardiol. 2007;49(6):643–56.CrossRefGoogle Scholar
  40. 40.
    Group BDS, Frye RL, August P, Brooks MM, Hardison RM, Kelsey SF, et al. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N Engl J Med. 2009;360(24):2503–15.CrossRefGoogle Scholar
  41. 41.
    Farkouh ME, Domanski M, Sleeper LA, Siami FS, Dangas G, Mack M, et al. Strategies for multivessel revascularization in patients with diabetes. N Engl J Med. 2012;367(25):2375–84.CrossRefGoogle Scholar
  42. 42.
    • Park SJ, Ahn JM, Kim YH, Park DW, Yun SC, Lee JY, et al. Trial of everolimus-eluting stents or bypass surgery for coronary disease. N Engl J Med. 2015;372(13):1204–12 This is a more contemporary comparison of drug eluting stents to coronary bypass surgery in multivessel disease, demonstrating the superiority of surgery in most patients in this cohort despite the use of 2nd generation drug-eluting stents. CrossRefGoogle Scholar
  43. 43.
    Ramanathan K, Abel JG, Park JE, Fung A, Mathew V, Taylor CM, et al. Surgical versus percutaneous coronary revascularization in patients with diabetes and acute coronary syndromes. J Am Coll Cardiol. 2017;70(24):2995–3006.CrossRefGoogle Scholar
  44. 44.
    Monaco M, Di Tommaso L, Mottola M, Stassano P, Iannelli G. Clinical outcome for on-pump myocardial revascularization in patients with mild renal dysfunction. Thorac Cardiovasc Surg. 2005;53(1):46–51.CrossRefGoogle Scholar
  45. 45.
    Stigant C, Izadnegahdar M, Levin A, Buller CE, Humphries KH. Outcomes after percutaneous coronary interventions in patients with CKD: improved outcome in the stenting era. Am J Kidney Dis. 2005;45(6):1002–9.CrossRefGoogle Scholar
  46. 46.
    Das P, Moliterno DJ, Charnigo R, Mukherjee D, Steinhubl SR, Sneed JD, et al. Impact of drug-eluting stents on outcomes of patients with end-stage renal disease undergoing percutaneous coronary revascularization. J Invasive Cardiol. 2006;18(9):405–8.PubMedGoogle Scholar
  47. 47.
    Ix JH, Mercado N, Shlipak MG, Lemos PA, Boersma E, Lindeboom W, et al. Association of chronic kidney disease with clinical outcomes after coronary revascularization: the arterial revascularization therapies study (ARTS). Am Heart J. 2005;149(3):512–9.CrossRefGoogle Scholar
  48. 48.
    Ragosta M, Dee S, Sarembock IJ, Lipson LC, Gimple LW, Powers ER. Prevalence of unfavorable angiographic characteristics for percutaneous intervention in patients with unprotected left main coronary artery disease. Catheter Cardiovasc Interv. 2006;68(3):357–62.CrossRefGoogle Scholar
  49. 49.
    Lee PH, Ahn JM, Chang M, Baek S, Yoon SH, Kang SJ, et al. Left Main coronary artery disease: secular trends in patient characteristics, treatments, and outcomes. J Am Coll Cardiol. 2016;68(11):1233–46.CrossRefGoogle Scholar
  50. 50.
    Caracciolo EA, Davis KB, Sopko G, Kaiser GC, Corley SD, Schaff H, et al. Comparison of surgical and medical group survival in patients with left main equivalent coronary artery diseas. Long-term CASS experience. Circulation. 1995;91(9):2335–44.CrossRefGoogle Scholar
  51. 51.
    Chaitman BR, Fisher LD, Bourassa MG, Davis K, Rogers WJ, Maynard C, et al. Effect of coronary bypass surgery on survival patterns in subsets of patients with left main coronary artery disease. Report of the collaborative study in coronary artery surgery (CASS). Am J Cardiol. 1981;48(4):765–77.CrossRefGoogle Scholar
  52. 52.
    Yusuf S, Zucker D, Peduzzi P, Fisher LD, Takaro T, Kennedy JW, et al. Effect of coronary artery bypass graft surgery on survival: overview of 10-year results from randomised trials by the coronary artery bypass graft surgery trialists collaboration. Lancet. 1994;344(8922):563–70.CrossRefGoogle Scholar
  53. 53.
    Makikallio T, Holm NR, Lindsay M, Spence MS, Erglis A, Menown IB, et al. Percutaneous coronary angioplasty versus coronary artery bypass grafting in treatment of unprotected left main stenosis (NOBLE): a prospective, randomised, open-label, non-inferiority trial. Lancet. 2016;388(10061):2743–52.CrossRefGoogle Scholar
  54. 54.
    • Stone GW, Sabik JF, Serruys PW, Simonton CA, Genereux P, Puskas J, et al. Everolimus-eluting stents or bypass surgery for left main coronary artery disease. N Engl J Med. 2016;375(23):2223–35 This is the most contemporary randomized trial of patients with left main coronary artery disease with low or intermediate SYNTAX scores demonstrating the non-inferiority of PCI with everolimus-eluting stents to CABG with respect to major adverse cardiac events at 3 years. CrossRefGoogle Scholar
  55. 55.
    Jacobs AK, French JK, Col J, Sleeper LA, Slater JN, Carnendran L, et al. Cardiogenic shock with non-ST-segment elevation myocardial infarction: a report from the SHOCK Trial Registry. Should we emergently revascularize occluded coronaries for cardiogenic shock? J Am Coll Cardiol. 2000;36(3 Suppl A):1091–6.CrossRefGoogle Scholar
  56. 56.
    Holmes DR Jr, Berger PB, Hochman JS, Granger CB, Thompson TD, Califf RM, et al. Cardiogenic shock in patients with acute ischemic syndromes with and without ST-segment elevation. Circulation. 1999;100(20):2067–73.CrossRefGoogle Scholar
  57. 57.
    Anderson ML, Peterson ED, Peng SA, Wang TY, Ohman EM, Bhatt DL, et al. Differences in the profile, treatment, and prognosis of patients with cardiogenic shock by myocardial infarction classification: a report from NCDR. Circ Cardiovasc Qual Outcomes. 2013;6(6):708–15.CrossRefGoogle Scholar
  58. 58.
    Hillis LD, Smith PK, Anderson JL, Bittl JA, Bridges CR, Byrne JG, et al. 2011 ACCF/AHA guideline for coronary artery bypass graft surgery. A report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Developed in collaboration with the American Association for Thoracic Surgery, Society of Cardiovascular Anesthesiologists, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2011;58(24):e123–210.CrossRefGoogle Scholar
  59. 59.
    Bybee KA, Powell BD, Valeti U, Rosales AG, Kopecky SL, Mullany C, et al. Preoperative aspirin therapy is associated with improved postoperative outcomes in patients undergoing coronary artery bypass grafting. Circulation. 2005;112(9 Suppl):I286–92.PubMedGoogle Scholar
  60. 60.
    Dacey LJ, Munoz JJ, Johnson ER, Leavitt BJ, Maloney CT, Morton JR, et al. Effect of preoperative aspirin use on mortality in coronary artery bypass grafting patients. Ann Thorac Surg. 2000;70(6):1986–90.CrossRefGoogle Scholar
  61. 61.
    Mangano DT. Multicenter study of perioperative ischemia research G. Aspirin and mortality from coronary bypass surgery. N Engl J Med. 2002;347(17):1309–17.CrossRefGoogle Scholar
  62. 62.
    Kim JH, Newby LK, Clare RM, Shaw LK, Lodge AJ, Smith PK, et al. Clopidogrel use and bleeding after coronary artery bypass graft surgery. Am Heart J. 2008;156(5):886–92.CrossRefGoogle Scholar
  63. 63.
    Puskas JD, Halkos ME, DeRose JJ, Bagiella E, Miller MA, Overbey J, et al. Hybrid coronary revascularization for the treatment of multivessel coronary artery disease: a multicenter observational study. J Am Coll Cardiol. 2016;68(4):356–65.CrossRefGoogle Scholar
  64. 64.
    Masoudi FA, Ponirakis A, de Lemos JA, Jollis JG, Kremers M, Messenger JC, et al. Trends in U.S. cardiovascular care: 2016 report from 4 ACC National Cardiovascular Data Registries. J Am Coll Cardiol. 2017;69(11):1427–50.CrossRefGoogle Scholar
  65. 65.
    Ruiz-Rodriguez E, Asfour A, Lolay G, Ziada KM, Abdel-Latif AK. Systematic review and meta-analysis of major cardiovascular outcomes for radial versus femoral access in patients with acute coronary syndrome. South Med J. 2016;109(1):61–76.CrossRefGoogle Scholar
  66. 66.
    Ferrante G, Rao SV, Juni P, Da Costa BR, Reimers B, Condorelli G, et al. Radial versus femoral access for coronary interventions across the entire spectrum of patients with coronary artery disease: a meta-analysis of randomized trials. JACC Cardiovasc Interv. 2016;9(14):1419–34.CrossRefGoogle Scholar
  67. 67.
    Claessen BE, van der Schaaf RJ, Verouden NJ, Stegenga NK, Engstrom AE, Sjauw KD, et al. Evaluation of the effect of a concurrent chronic total occlusion on long-term mortality and left ventricular function in patients after primary percutaneous coronary intervention. JACC Cardiovasc Interv. 2009;2(11):1128–34.CrossRefGoogle Scholar
  68. 68.
    Gierlotka M, Tajstra M, Gasior M, Hawranek M, Osadnik T, Wilczek K, et al. Impact of chronic total occlusion artery on 12-month mortality in patients with non-ST-segment elevation myocardial infarction treated by percutaneous coronary intervention (from the PL-ACS registry). Int J Cardiol. 2013;168(1):250–4.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Bennet George
    • 1
  • Naoki Misumida
    • 1
  • Khaled M. Ziada
    • 1
    Email author
  1. 1.Division of Cardiovascular Medicine, Gill Heart and Vascular InstituteUniversity of KentuckyLexingtonUSA

Personalised recommendations