Current Cardiology Reports

, 20:136 | Cite as

Role of Echocardiography in Assessment of Cardioembolic Sources: a Strong Diagnostic Resource in Patients with Ischemic Stroke

  • Luca Longobardo
  • Concetta Zito
  • Scipione Carerj
  • Giuseppe Caracciolo
  • Matt Umland
  • Bijoy K. KhandheriaEmail author
Echocardiography (JM Gardin and AH Waller, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Echocardiography


Purpose of Review

This review will discuss the most frequent sources of cardiac embolism and the role of echocardiography in these different clinical settings, and, in addition, provide suggestions about the choice between transthoracic (TTE) and transesophageal echocardiography (TEE).

Recent Findings

Stroke is the third leading cause of death in industrial countries, and 15–40% of all ischemic strokes are due to cardioembolism. TTE and TEE are cornerstones in the detection of cardioembolic sources and provide fundamental information about the embolic risk and most suitable treatment of these patients, improving long-term outcomes.


Echocardiography is a widely available, inexpensive, and safe diagnostic tool that is almost free from contraindication, and these elements allow the common use of this technique in almost all the patients with ischemic stroke. The most common cardioembolic sources include left atrial appendage thrombosis during atrial fibrillation; vegetations in infective endocarditis; cardiac masses including left ventricular thrombosis, cardiac tumors, etc.; atherosclerotic plaques; and passageways within the heart serving as conduits for paradoxical embolization, e.g., patent foramen ovale.


Stroke Cardioembolic sources Endocarditis Atrial fibrillation Thrombus Echocardiography 



The authors are grateful to Jennifer Pfaff and Susan Nord of Aurora Cardiovascular Services for editorial preparation of the manuscript.

Compliance with Ethical Standards

Conflict of Interest

Luca Longobardo, Concetta Zito, Scipione Carerj, Giuseppe Caracciolo, Matt Umland, and Bijoy K. Khandheria declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Supplementary material

11886_2018_1085_MOESM1_ESM.avi (10.4 mb)
Video 1 Two-dimensional transesophageal echocardiography 2-chamber view showing a huge thrombus in the left atrial appendage in a 67-year-old patient with atrial fibrillation. Please note the dense spontaneous echo contrast. (AVI 10626 kb)
11886_2018_1085_MOESM2_ESM.avi (9.7 mb)
Video 2 Two-dimensional transesophageal echocardiography 2-chamber view showing an example of vegetation involving the posterior leaflet of the mitral valve in a 47-year-old patient with infective endocarditis. (AVI 9883 kb)
11886_2018_1085_MOESM3_ESM.avi (2.2 mb)
Video 3 Three-dimensional transesophageal echocardiography en face view showing a vegetation involving the posterior leaflet of the mitral valve. (AVI 2270 kb)
11886_2018_1085_MOESM4_ESM.avi (8.2 mb)
Video 4 Two-dimensional transthoracic echocardiography parasternal long-axis view showing a huge myxoma that originates from the interatrial septum and moves through the mitral valve from the left atrium to the left ventricle in diastole. (AVI 8353 kb)


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation. 2018;137:e67–492 Erratum in: Circulation. 2018;137:e493.CrossRefGoogle Scholar
  2. 2.
    Zhang L, Harrison JK, Goldstein LB. Echocardiography for the detection of cardiac sources of embolism in patients with stroke or transient ischemic attack. J Stroke Cerebrovasc Dis. 2012;21:577–82.CrossRefGoogle Scholar
  3. 3.
    Pepi M, Evangelista A, Nihoyannopoulos P, Flachskampf FA, Athanassopoulos G, Colonna P, et al. Recommendations for echocardiography use in the diagnosis and management of cardiac sources of embolism: European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur J Echocardiogr. 2010;11:461–76.CrossRefGoogle Scholar
  4. 4.
    Murtagh B, Smalling RW. Cardioembolic stroke. Curr Atheroscler Rep. 2006;8:310–6.CrossRefGoogle Scholar
  5. 5.
    Gladstone DJ, Spring M, Dorian P, Panzov V, Thorpe KE, Hall J, et al. Atrial fibrillation in patients with cryptogenic stroke. N Engl J Med. 2014;370:2467–77.CrossRefGoogle Scholar
  6. 6.
    •• Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, et al. ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;2016(37):2893–962 These guidelines provide the most recent suggestions for the management of atrial fibrillation, including the identification of the fundamental role of echocardiography in the diagnosis and management of these patients. CrossRefGoogle Scholar
  7. 7.
    Klein AL, Grimm RA, Murray RD, Apperson-Hansen C, Asinger RW, Black IW, et al. Use of transesophageal echocardiography to guide cardioversion in patients with atrial fibrillation. N Engl J Med. 2001;344:1411–20.CrossRefGoogle Scholar
  8. 8.
    Carerj S, Trifiró MP, Granata A, Luzza F, Arrigo F, Oreto G. Comparison between transesophageal echocardiography and transthoracic echocardiography with harmonic tissue imaging for left atrial appendage assessment. Clin Cardiol. 2002;25:268–70.CrossRefGoogle Scholar
  9. 9.
    Acar J, Cormier B, Grimberg D, Kawthekar G, Iung B, Scheuer B, et al. Diagnosis of left atrial thrombi in mitral stenosis--usefulness of ultrasound techniques compared with other methods. Eur Heart J. 1991:12 Suppl B:70–6.Google Scholar
  10. 10.
    Zabalgoitia M, Halperin JL, Pearce LA, Blackshear JL, Asinger RW, Hart RG. Transesophageal echocardiographic correlates of clinical risk of thromboembolism in nonvalvular atrial fibrillation. Stroke Prevention in Atrial Fibrillation III Investigators. J Am Coll Cardiol. 1998;31:1622–6.CrossRefGoogle Scholar
  11. 11.
    Hajjiri M, Bernstein S, Saric M, Benenstein R, Aizer A, Dym G, et al. Atrial fibrillation ablation in patients with known sludge in the left atrial appendage. J Interv Card Electrophysiol. 2014;40:147–51.CrossRefGoogle Scholar
  12. 12.
    Tabata T, Oki T, Fukuda N, Iuchi A, Manabe K, Kageji Y, et al. Influence of aging on left atrial appendage flow velocity patterns in normal subjects. J Am Soc Echocardiogr. 1996;9:274–80.CrossRefGoogle Scholar
  13. 13.
    Santiago D, Warshofsky M, Li Mandri G, Di Tullio M, Coromilas J, Reiffel J, et al. Left atrial appendage function and thrombus formation in atrial fibrillation-flutter: a transesophageal echocardiographic study. J Am Coll Cardiol. 1994;24:159–64.CrossRefGoogle Scholar
  14. 14.
    Di Biase L, Santangeli P, Anselmino M, Mohanty P, Salvetti I, Gili S, et al. Does the left atrial appendage morphology correlate with the risk of stroke in patients with atrial fibrillation? Results from a multicenter study. J Am Coll Cardiol. 2012;60:531–8.CrossRefGoogle Scholar
  15. 15.
    Agoston I, Xie T, Tiller FL, Rahman AM, Ahmad M. Assessment of left atrial appendage by live three-dimensional echocardiography: early experience and comparison with transesophageal echocardiography. Echocardiography. 2006;23:127–32.CrossRefGoogle Scholar
  16. 16.
    Karakus G, Kodali V, Inamdar V, Nanda NC, Suwanjutah T, Pothineni KR. Comparative assessment of left atrial appendage by transesophageal and combined two- and three-dimensional transthoracic echocardiography. Echocardiography. 2008;25:918–24.CrossRefGoogle Scholar
  17. 17.
    Thuny F, Avierinos JF, Tribouilloy C, Giorgi R, Casalta JP, Milandre L, et al. Impact of cerebrovascular complications on mortality and neurologic outcome during infective endocarditis: a prospective multicentre study. Eur Heart J. 2007;28:1155–61.CrossRefGoogle Scholar
  18. 18.
    Habib G, Lancellotti P, Antunes MJ, Bongiorni MG, Casalta JP, Del Zotti F, et al. 2015 ESC Guidelines for the management of infective endocarditis: the Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J. 2015;36:3075–128.CrossRefGoogle Scholar
  19. 19.
    Mügge A, Daniel WG, Frank G, Lichtlen PR. Echocardiography in infective endocarditis: reassessment of prognostic implications of vegetation size determined by the transthoracic and the transesophageal approach. J Am Coll Cardiol. 1989;14:631–8.CrossRefGoogle Scholar
  20. 20.
    Kirkpatrick JN, Wong T, Bednarz JE, Spencer KT, Sugeng L, Ward RP, et al. Differential diagnosis of cardiac masses using contrast echocardiographic perfusion imaging. J Am Coll Cardiol. 2004;43:1412–9.CrossRefGoogle Scholar
  21. 21.
    Durack DT, Lukes AS, Bright DK. New criteria for diagnosis of infective endocarditis: utilization of specific echocardiographic findings. Duke Endocarditis Service. Am J Med. 1994;96:200–9.CrossRefGoogle Scholar
  22. 22.
    Di Salvo G, Habib G, Pergola V, Avierinos JF, Philip E, Casalta JP, et al. Echocardiography predicts embolic events in infective endocarditis. J Am Coll Cardiol. 2001;37:1069–76.CrossRefGoogle Scholar
  23. 23.
    Rizzi M, Ravasio V, Carobbio A, Mattucci I, Crapis M, Stellini R, et al. Predicting the occurrence of embolic events: an analysis of 1456 episodes of infective endocarditis from the Italian Study on Endocarditis (SEI). BMC Infect Dis. 2014;14:230.CrossRefGoogle Scholar
  24. 24.
    Hubert S, Thuny F, Resseguier N, Giorgi R, Tribouilloy C, Le Dolley Y, et al. Prediction of symptomatic embolism in infective endocarditis: construction and validation of a risk calculator in a multicenter cohort. J Am Coll Cardiol. 2013;62:1384–92.CrossRefGoogle Scholar
  25. 25.
    Mohananey D, Mohadjer A, Pettersson G, Navia J, Gordon S, Shrestha N, et al. Association of vegetation size with embolic risk in patients with infective endocarditis: a systematic review and meta-analysis. JAMA Intern Med. 2018;178:502–10.CrossRefGoogle Scholar
  26. 26.
    Palraj BR, Baddour LM, Hess EP, Steckelberg JM, Wilson WR, Lahr BD, et al. Predicting Risk of Endocarditis Using a Clinical Tool (PREDICT): scoring system to guide use of echocardiography in the management of Staphylococcus aureus bacteremia. Clin Infect Dis. 2015;61:18–28.CrossRefGoogle Scholar
  27. 27.
    Longobardo L, Klemm S, Cook M, Ravenna V, Brummitt CF, Mengesha T, et al. Risk assessment for infected endocarditis in Staphylococcus aureus bacteremia patients: when is transesophageal echocardiography needed? Eur Heart J Acute Cardiovasc Care. 2017;1:2048872617735809.Google Scholar
  28. 28.
    Roldan CA, Tolstrup K, Macias L, Qualls CR, Maynard D, Charlton G, et al. Libman-Sacks endocarditis: detection, characterization, and clinical correlates by three-dimensional transesophageal echocardiography. J Am Soc Echocardiogr. 2015;28:770–9.CrossRefGoogle Scholar
  29. 29.
    Reynen K. Cardiac myxomas. N Engl J Med. 1995;333:1610–7.CrossRefGoogle Scholar
  30. 30.
    Kalkan AK, Uygur B, Karakayalı M, Kadirogulları E, Erturk M. The advantages of live/real-time three-dimensional echocardiograhy in the assessment of left ventricular myxoma, which causes partial left ventricular outflow tract obstruction. J Clin Ultrasound. 2018;46:273–7.CrossRefGoogle Scholar
  31. 31.
    Jugdutt BI, Sivaram CA. Prospective two-dimensional echocardiographic evaluation of left ventricular thrombus and embolism after acute myocardial infarction. J Am Coll Cardiol. 1989;13:554–64.CrossRefGoogle Scholar
  32. 32.
    • Zhao H, O’Quinn R, Ambrose M, Jagasia D, Ky B, Wald J, et al. Contrast-enhanced echocardiography has the greatest impact in patients with reduced ejection fractions. J Am Soc Echocardiogr. 2018;31:289–96 This article summarizes the role of echo contrast in the everyday routine, particularly in patients with reduced EF. CrossRefGoogle Scholar
  33. 33.
    Cannegieter SC, Rosendaal FR, Briët E. Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses. Circulation. 1994;89:635–41.CrossRefGoogle Scholar
  34. 34.
    Gürsoy MO, Kalçik M, Karakoyun S, Özkan M. The current status of fluoroscopy and echocardiography in the diagnosis of prosthetic valve thrombosis-a review article. Echocardiography. 2015;32:156–64.CrossRefGoogle Scholar
  35. 35.
    Montorsi P, De Bernardi F, Muratori M, Cavoretto D, Pepi M. Role of cine-fluoroscopy, transthoracic, and transesophageal echocardiography in patients with suspected prosthetic heart valve thrombosis. Am J Cardiol. 2000 Jan;85:58–64.CrossRefGoogle Scholar
  36. 36.
    Baumgartner H, Falk V, Bax JJ, De Bonis M, Hamm C, Holm PJ, et al. 2017 ESC/EACTS guidelines for the management of valvular heart disease. Eur Heart J. 2017;38:2739–91.CrossRefGoogle Scholar
  37. 37.
    Ozkan M, Gündüz S, Yildiz M, Duran NE. Diagnosis of the prosthetic heart valve pannus formation with real-time three-dimensional transoesophageal echocardiography. Eur J Echocardiogr. 2010;11:E17.PubMedGoogle Scholar
  38. 38.
    French Study of Aortic Plaques in Stroke Group, Amarenco P, Cohen A, Hommel M, Moulin T, Leys D, et al. Atherosclerotic disease of the aortic arch as a risk factor for recurrent ischemic stroke. N Engl J Med. 1996;334:1216–21.CrossRefGoogle Scholar
  39. 39.
    Hammoudi N, Ihaddaden M, Lang S, Laveau F, Ederhy S, Michel PL, et al. Three-dimensional transesophageal echocardiography for descending aortic atheroma: a preliminary study. Int J Cardiovasc Imaging. 2014;30:1529–37.CrossRefGoogle Scholar
  40. 40.
    Piazzese C, Tsang W, Sotaquira M, Kronzon I, Lang RM, Caiani EG. Semiautomated detection and quantification of aortic plaques from three-dimensional transesophageal echocardiography. J Am Soc Echocardiogr. 2014;27:758–66.CrossRefGoogle Scholar
  41. 41.
    Hagen PT, Scholz DG, Edwards WD. Incidence and size of patent foramen ovale during the first 10 decades of life: an autopsy study of 965 normal hearts. Mayo Clin Proc. 1984;59:17–20.CrossRefGoogle Scholar
  42. 42.
    Handke M, Harloff A, Olschewski M, Hetzel A, Geibel A. Patent foramen ovale and cryptogenic stroke in older patients. N Engl J Med. 2007;357:2262–8.CrossRefGoogle Scholar
  43. 43.
    Meissner I, Khandheria BK, Heit JA, Petty GW, Sheps SG, Schwartz GL, et al. Patent foramen ovale: innocent or guilty? Evidence from a prospective population-based study. J Am Coll Cardiol. 2006;47:440–5.CrossRefGoogle Scholar
  44. 44.
    Di Tullio MR, Jin Z, Russo C, Elkind MS, Rundek T, Yoshita M, et al. Patent foramen ovale, subclinical cerebrovascular disease, and ischemic stroke in a population-based cohort. J Am Coll Cardiol. 2013;62:35–41.CrossRefGoogle Scholar
  45. 45.
    • Mojadidi MK, Zaman MO, Elgendy IY, Mahmoud AN, Patel NK, Agarwal N, et al. Cryptogenic stroke and patent foramen ovale. J Am Coll Cardiol. 2018;71:1035–43 This article provides the most recent data about the often-debated relationship between patent foramen ovale and stroke. CrossRefGoogle Scholar
  46. 46.
    Mahmoud AN, Elgendy IY, Agarwal N, Tobis JM, Mojadidi MK. Identification and quantification of patent foramen ovale-mediated shunts: echocardiography and transcranial Doppler. Interv Cardiol Clin. 2017;6:495–504.PubMedGoogle Scholar
  47. 47.
    Homma S, Sacco RL, Di Tullio MR, Sciacca RR, Mohr JP. Atrial anatomy in non-cardioembolic stroke patients: effect of medical therapy. J Am Coll Cardiol. 2003;42:1066–72.CrossRefGoogle Scholar
  48. 48.
    Wessler BS, Thaler DE, Ruthazer R, Weimar C, Di Tullio MR, Elkind MS, et al. Transesophageal echocardiography in cryptogenic stroke and patent foramen ovale: analysis of putative high-risk features from the risk of paradoxical embolism database. Circ Cardiovasc Imaging. 2014;7:125–31.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Luca Longobardo
    • 1
  • Concetta Zito
    • 1
  • Scipione Carerj
    • 1
  • Giuseppe Caracciolo
    • 2
  • Matt Umland
    • 2
  • Bijoy K. Khandheria
    • 2
    • 3
    Email author
  1. 1.Department of Clinical and Experimental Medicine – Section of CardiologyUniversity of Messina, Azienda Ospedaliera Universitaria “Policlinico G. Martino” and Universita’ degli Studi di MessinaMessinaItaly
  2. 2.Aurora Cardiovascular ServicesAurora Sinai/Aurora St. Luke’s Medical CentersMilwaukeeUSA
  3. 3.Marcus Family Fund for Echocardiography (ECHO) Research and EducationMilwaukeeUSA

Personalised recommendations