Light-Sheet Imaging to Elucidate Cardiovascular Injury and Repair

  • Yichen Ding
  • Juhyun Lee
  • Jeffrey J. Hsu
  • Chih-Chiang Chang
  • Kyung In Baek
  • Sara Ranjbarvaziri
  • Reza Ardehali
  • René R. Sevag Packard
  • Tzung K. Hsiai
Regenerative Medicine (SM Wu, Section Editor)
  • 151 Downloads
Part of the following topical collections:
  1. Topical Collection on Regenerative Medicine

Abstract

Purpose of Review

Real-time 3-dimensional (3-D) imaging of cardiovascular injury and regeneration remains challenging. We introduced a multi-scale imaging strategy that uses light-sheet illumination to enable applications of cardiovascular injury and repair in models ranging from zebrafish to rodent hearts.

Recent Findings

Light-sheet imaging enables rapid data acquisition with high spatiotemporal resolution and with minimal photo-bleaching or photo-toxicity. We demonstrated the capacity of this novel light-sheet approach for scanning a region of interest with specific fluorescence contrast, thereby providing axial and temporal resolution at the cellular level without stitching image columns or pivoting illumination beams during one-time imaging. This cutting-edge imaging technique allows for elucidating the differentiation of stem cells in cardiac regeneration, providing an entry point to discover novel micro-circulation phenomenon with clinical significance for injury and repair.

Summary

These findings demonstrate the multi-scale applications of this novel light-sheet imaging strategy to advance research in cardiovascular development and regeneration.

Keywords

Light-sheet imaging Cardiovascular injury Regeneration Doxorubicin 

Notes

Acknowledgements

The authors would like to express gratitude to all lab members for discussion and insights.

Compliance with Ethical Standards

Conflict of Interest

Yichen Ding, Juhyun Lee, Jeffrey J. Hsu, Chih-Chiang Chang, Kyung In Baek, Sara Ranjbarvazirj, Reza Ardehali, René R. Sevag Packard, and Tzung K. Hsiai declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human subjects performed by any of the authors. All animal rights have been approved by AAALAC and USDA.

References

Papers of particular interest, published recently, have been highlighted as: • of importance

  1. 1.
    Huisken J, Stainier DY. Selective plane illumination microscopy techniques in developmental biology. Development. 2009;136(12):1963–75.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    De Vos WH, Beghuin D, Schwarz CJ, Jones DB, van Loon JJ, Bereiter-Hahn J, et al. Invited review article: advanced light microscopy for biological space research. Rev Sci Instr. 2014;85(10):101101.CrossRefGoogle Scholar
  3. 3.
    Power RM, Huisken J. A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat Meth. 2017;14(4):360–73.CrossRefGoogle Scholar
  4. 4.
    Bacallao R, Kiai K, Jesaitis L. Guiding principles of specimen preservation for confocal fluorescence microscopy. In: Pawley J, editor. Handbook of biological confocal microscopy. Boston: Springer; 2006. p. 368–80.CrossRefGoogle Scholar
  5. 5.
    Miyaoka R, Lewellen T, Yu H, McDaniel D. Design of a depth of interaction (DOI) PET detector module. IEEE T Nucl Sci. 1998;45(3):1069–73.CrossRefGoogle Scholar
  6. 6.
    Tai Y-C, Chatziioannou AF, Yang Y, Silverman RW, Meadors K, Siegel S, et al. MicroPET II: design, development and initial performance of an improved microPET scanner for small-animal imaging. Phys Med Biol. 2003;48(11):1519–37.CrossRefPubMedGoogle Scholar
  7. 7.
    Paxton R, Ambrose J. The EMI scanner. A brief review of the first 650 patients. Brit J Radiol. 1974;47(561):530–65.CrossRefPubMedGoogle Scholar
  8. 8.
    Prokop M. General principles of MDCT. Eur J Radiol. 2003;45:S4–S10.CrossRefPubMedGoogle Scholar
  9. 9.
    Kelly KA, Allport JR, Tsourkas A, Shinde-Patil VR, Josephson L, Weissleder R. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ Res. 2005;96(3):327–36.CrossRefPubMedGoogle Scholar
  10. 10.
    van der Graaf M. In vivo magnetic resonance spectroscopy: basic methodology and clinical applications. Eur Biophys J. 2010;39(4):527–40.CrossRefPubMedGoogle Scholar
  11. 11.
    Patel MR, Spertus JA, Brindis RG, Hendel RC, Douglas PS, Peterson ED, et al. ACCF proposed method for evaluating the appropriateness of cardiovascular imaging. J Am Coll Cardiol. 2005;46(8):1606–13.CrossRefPubMedGoogle Scholar
  12. 12.
    Slavin GS, Bluemke DA. Spatial and temporal resolution in cardiovascular MR imaging: review and recommendations. Radiology. 2005;234(2):330–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Sanz J, Fayad ZA. Imaging of atherosclerotic cardiovascular disease. Nature. 2008;451(7181):953–7.CrossRefPubMedGoogle Scholar
  14. 14.
    James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev. 2012;92(2):897–965.CrossRefPubMedGoogle Scholar
  15. 15.
    Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2014;15(10):1063–93.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    • Fei P, Lee J, Packard RRS, Sereti K-I, Xu H, Ma J, et al. Cardiac light-sheet fluorescent microscopy for multi-scale and rapid imaging of architecture and function. Sci Rep. 2016;6:22489. This study provides multi-scale visualization of architecture and function to drive cardiovascular research with translational implication in congenital heart diseases. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Guan Z, Lee J, Jiang H, Dong S, Jen N, Hsiai T, et al. Compact plane illumination plugin device to enable light sheet fluorescence imaging of multi-cellular organisms on an inverted wide-field microscope. Biomed Opt Express. 2016;7(1):194–208.CrossRefPubMedGoogle Scholar
  18. 18.
    • Lee J, Fei P, Packard RRS, Kang H, Xu H, Baek KI, et al. 4-dimensional light-sheet microscopy to elucidate shear stress modulation of cardiac trabeculation. J Clin Invest. 2016;126(5):1679–90. This study indicates that interfacing light-sheet imaging with the zebrafish system opens a fundamental direction for demonstrating shear stress modulation of trabeculation to influence contractile function via Notch signaling. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    • Ding Y, Abiri A, Abiri P, Li S, Chang C-C, Baek KI, et al. Integrating light-sheet imaging with virtual reality to recapitulate developmental cardiac mechanics. JCI Insight. 2017;2(22):e97180. This study demonstrates an efficient and robust framework for creating a user-directed microenvironment in which we uncovered developmental cardiac mechanics and physiology with high spatiotemporal resolution. CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Ding Y, Lee J, Ma J, Sung K, Yokota T, Singh N, et al. Light-sheet fluorescence imaging to localize cardiac lineage and protein distribution. Sci Rep. 2017;7:42209.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Buytaert JA, Dirckx JJ. Tomographic imaging of macroscopic biomedical objects in high resolution and three dimensions using orthogonal-plane fluorescence optical sectioning. Appl Opt. 2009;48(5):941–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Santi PA, Johnson SB, Hillenbrand M, GrandPre PZ, Glass TJ, Leger JR. Thin-sheet laser imaging microscopy for optical sectioning of thick tissues. BioTechniques. 2009;46(4):287–94.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Buytaert JA, Descamps E, Adriaens D, Dirckx JJ. The OPFOS microscopy family: high-resolution optical sectioning of biomedical specimens. Anat Res Int. 2012;2011:1–8.Google Scholar
  24. 24.
    Huisken J, Stainier DY. Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM). Opt Lett. 2007;32(17):2608–10.CrossRefPubMedGoogle Scholar
  25. 25.
    Ding Y, Xie H, Peng T, Lu Y, Jin D, Teng J, et al. Laser oblique scanning optical microscopy (LOSOM) for phase relief imaging. Opt Express. 2012;20(13):14100–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Peng T, Xie H, Ding Y, Wang W, Li Z, Jin D, et al. CRAFT: multimodality confocal skin imaging for early cancer diagnosis. J Biophotonics. 2012;5(5–6):469–76.CrossRefPubMedGoogle Scholar
  27. 27.
    Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EH. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science. 2004;305(5686):1007–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Scherz PJ, Huisken J, Sahai-Hernandez P, Stainier DY. High-speed imaging of developing heart valves reveals interplay of morphogenesis and function. Development. 2008;135(6):1179–87.CrossRefPubMedGoogle Scholar
  29. 29.
    Mickoleit M, Schmid B, Weber M, Fahrbach FO, Hombach S, Reischauer S, et al. High-resolution reconstruction of the beating zebrafish heart. Nat Meth. 2014;11(9):919–22.CrossRefGoogle Scholar
  30. 30.
    Chhetri RK, Amat F, Wan Y, Höckendorf B, Lemon WC, Keller PJ. Whole-animal functional and developmental imaging with isotropic spatial resolution. Nat Meth. 2015;12:1171–8.CrossRefGoogle Scholar
  31. 31.
    Dodt H-U, Saghafi S, Becker K, Jährling N, Hahn C, Pende M, et al. Ultramicroscopy: development and outlook. Neurophotonics. 2015;2(4):041407.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wu Y, Wawrzusin P, Senseney J, Fischer RS, Christensen R, Santella A, et al. Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy. Nat Biotechnol. 2013;31(11):1032–8.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chen B-C, Legant WR, Wang K, Shao L, Milkie DE, Davidson MW, et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science. 2014;346(6208):1257998.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EH. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science. 2008;322(5904):1065–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Alvers AL, Ryan S, Scherz PJ, Huisken J, Bagnat M. Single continuous lumen formation in the zebrafish gut is mediated by smoothened-dependent tissue remodeling. Development. 2014;141(5):1110–9.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Truong TV, Supatto W, Koos DS, Choi JM, Fraser SE. Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat Meth. 2011;8(9):757–60.CrossRefGoogle Scholar
  37. 37.
    Krzic U, Gunther S, Saunders TE, Streichan SJ, Hufnagel L. Multiview light-sheet microscope for rapid in toto imaging. Nat Meth. 2012;9(7):730–3.CrossRefGoogle Scholar
  38. 38.
    Dodt H-U, Leischner U, Schierloh A, Jährling N, Mauch CP, Deininger K, et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Meth. 2007;4(4):331–6.CrossRefGoogle Scholar
  39. 39.
    Saghafi S, Becker K, Jährling N, Richter M, Kramer ER, Dodt HU. Image enhancement in ultramicroscopy by improved laser light sheets. J Biophotonics. 2010;3(10–11):686–95.CrossRefPubMedGoogle Scholar
  40. 40.
    Saghafi S, Becker K, Hahn C, Dodt HU. 3D-ultramicroscopy utilizing aspheric optics. J Biophotonics. 2014;7(1–2):117–25.CrossRefPubMedGoogle Scholar
  41. 41.
    Buytaert JA, Dirckx JJ. Design and quantitative resolution measurements of an optical virtual sectioning three-dimensional imaging technique for biomedical specimens, featuring two-micrometer slicing resolution. J Biomed Opt. 2007;12(1):014039–13.CrossRefPubMedGoogle Scholar
  42. 42.
    Richardson DS, Lichtman JW. Clarifying tissue clearing. Cell. 2015;162(2):246–57.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Tomer R, Lovett-Barron M, Kauvar I, Andalman A, Burns VM, Sankaran S, et al. SPED light sheet microscopy: fast mapping of biological system structure and function. Cell. 2015;163(7):1796–806.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Sung K, Ding Y, Ma J, Chen H, Huang V, Cheng M, et al. Simplified three-dimensional tissue clearing and incorporation of colorimetric phenotyping. Sci Rep. 2016;6:30736.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lee J, Cao H, Kang BJ, Jen N, Yu F, Lee C-A, et al. Hemodynamics and ventricular function in a zebrafish model of injury and repair. Zebrafish. 2014;11(5):447–54.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ding Y, Sun X, Huang W, Hoage T, Redfield M, Kushwaha S, et al. Haploinsufficiency of target of rapamycin attenuates cardiomyopathies in adult zebrafish novelty and significance. Circ Res. 2011;109(6):658–69.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Packard RRS, Baek KI, Beebe T, Jen N, Ding Y, Shi F, et al. Automated segmentation of light-sheet fluorescent imaging to characterize experimental doxorubicin-induced cardiac injury and repair. Sci Rep. 2017;7:8603.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Hsieh PC, Segers VF, Davis ME, MacGillivray C, Gannon J, Molkentin JD, et al. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med. 2007;13(8):970–4.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98–102.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Rinkevich Y, Lindau P, Ueno H, Longaker MT, Weissman IL. Germ and lineage restricted stem/progenitors regenerate the mouse digit tip. Nature. 2011;476(7361):409–13.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yichen Ding
    • 1
    • 2
  • Juhyun Lee
    • 2
    • 3
  • Jeffrey J. Hsu
    • 1
  • Chih-Chiang Chang
    • 2
  • Kyung In Baek
    • 2
  • Sara Ranjbarvaziri
    • 1
  • Reza Ardehali
    • 1
  • René R. Sevag Packard
    • 1
  • Tzung K. Hsiai
    • 1
    • 2
    • 4
  1. 1.Department of MedicineDavid Geffen School of Medicine at UCLALos AngelesUSA
  2. 2.Department of BioengineeringUniversity of CaliforniaLos AngelesUSA
  3. 3.Department of BioengineeringUniversity of Texas at ArlingtonArlingtonUSA
  4. 4.Medical EngineeringCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations