Advertisement

Functional Brain Imaging in Voiding Dysfunction

  • Rose KhavariEmail author
  • Timothy B. Boone
Voiding Dysfunction Evaluation (B Brucker and B Peyronnet, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Voiding Dysfunction Evaluation

Abstract

Purpose of Review

Voiding dysfunction (VD) is morbid, costly, and leads to urinary tract infections, stones, sepsis, and permanent renal failure. Evaluation and diagnosis of VD in non-obstructed patients can be challenging. Potential diagnostic and therapeutic options beyond the bladder, such as brain centers involved in voiding have been proposed as promising targets. This review focuses on current and future applications of functional neuroimaging in human in voiding and in patients with VD.

Recent Findings

The current understanding of brain centers and their roles in initiating, maintaining, and/or modulating voiding is rudimentary in humans and in patients with VD. With the advent and advancement in functional neuroimaging, we are gaining more insight into specific brain regions involved in the voiding phase of micturition. In healthy individuals, right dorsomedial pontine tegmentum, periaqueductal gray, hypothalamus, and the inferior, medial, and superior frontal gyrus have been identified as regions of interest in voiding.

Summary

Functional neuroimaging could suggest new diagnostic methods and provides crucial steps towards therapeutic options for the morbid and intractable VD condition, in patients with neurogenic (e.g., MS or strokes) or non-neurogenic VD (e.g., underactive bladder or Fowler’s syndrome).

Keywords

Voiding fMRI Neuroimaging Bladder dysfunction Micturition 

Notes

Compliance with Ethical Standards

Conflict of Interest

Dr. Khavari reports that she is partially supported by K23DK118209, by National Institute of Heath, NIDDK.

Dr. Boone has nothing to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Panicker JN, Fowler CJ, Kessler TM. Lower urinary tract dysfunction in the neurological patient: clinical assessment and management. Lancet Neurol. 2015;14(7):720–32.Google Scholar
  2. 2.
    Stoffel JT. Detrusor sphincter dyssynergia: a review of physiology, diagnosis, and treatment strategies. Transl Androl Urol. 2016;5(1):127–35.Google Scholar
  3. 3.
    Wein AJ. Classification of neurogenic voiding dysfunction. J Urol. 1981;125(5):605–9.Google Scholar
  4. 4.
    Lo TS, Shailaja N, Hsieh WC, Uy-Patrimonio MC, Yusoff FM, Ibrahim R. Predictors of voiding dysfunction following extensive vaginal pelvic reconstructive surgery. Int Urogynecol J. 2017;28(4):575–82.Google Scholar
  5. 5.
    Griffiths D, Tadic SD. Bladder control, urgency, and urge incontinence: evidence from functional brain imaging. Neurourol Urodyn. 2008;27(6):466–74.Google Scholar
  6. 6.
    Kuhtz-Buschbeck JP, Gilster R, van der Horst C, Hamann M, Wolff S, Jansen O. Control of bladder sensations: an fMRI study of brain activity and effective connectivity. NeuroImage. 2009;47(1):18–27.Google Scholar
  7. 7.
    Kuhtz-Buschbeck JP, van der Horst C, Wolff S, Filippow N, Nabavi A, Jansen O, et al. Activation of the supplementary motor area (SMA) during voluntary pelvic floor muscle contractions--an fMRI study. NeuroImage. 2007;35(2):449–57.Google Scholar
  8. 8.
    Kuhtz-Buschbeck JP, van der Horst C, Pott C, Wolff S, Nabavi A, Jansen O, et al. Cortical representation of the urge to void: a functional magnetic resonance imaging study. J Urol. 2005;174(4):1477–81.Google Scholar
  9. 9.
    • Blok BF, Sturms LM, Holstege G. Brain activation during micturition in women. Brain. 1998;121(Pt 11):2033–42. The first neuroimaging study on brain control over voiding. Google Scholar
  10. 10.
    • Blok BF, Willemsen AT, Holstege G. A PET study on brain control of micturition in humans. Brain. 1997;120(Pt 1):111–21. The first neuroimaging study on brain control over voiding. Google Scholar
  11. 11.
    Kavia R, Dasgupta R, Critchley H, Fowler C, Griffiths D. A functional magnetic resonance imaging study of the effect of sacral neuromodulation on brain responses in women with Fowler’s syndrome. BJU Int. 2010;105(3):366–72.Google Scholar
  12. 12.
    Khavari R, Karmonik C, Potter T, Shy M, Fletcher S, Boone T. MP17–09 trends in supraspinal variation in patients with multiple sclerosis and detrusor sphincter dyssenergia. J Urology. 2016;195(4):e187–e8.Google Scholar
  13. 13.
    Martinez L, Khavari R. New frontiers in molecular and imaging research on evaluation and diagnosis of bladder outlet obstruction in women. Curr Bladder Dysfunct Rep. 2017;12(4):291–7.Google Scholar
  14. 14.
    •• Khavari R, Karmonik C, Shy M, Fletcher S, Boone T. Functional magnetic resonance imaging with concurrent urodynamic testing identifies brain structures involved in micturition cycle in patients with multiple sclerosis. J Urol. 2017;197(2):438–44. The first functional neuroimaging study to evaluate brain control in voiding in neurogenic patients. Google Scholar
  15. 15.
    Khavari R, Elias SN, Pande R, Wu KM, Boone TB, Karmonik C. Higher neural correlates in patients with multiple sclerosis and neurogenic overactive bladder following treatment with intradetrusor injection of OnabotulinumtoxinA. J Urol. 2019;201(1):135–140.  https://doi.org/10.1016/j.juro.2018.07.066.
  16. 16.
    Zaitsev M, Akin B, LeVan P, Knowles BR. Prospective motion correction in functional MRI. NeuroImage. 2017;154:33–42.Google Scholar
  17. 17.
    Murphy K, Bodurka J, Bandettini PA. How long to scan? The relationship between fMRI temporal signal to noise ratio and necessary scan duration. NeuroImage. 2007;34(2):565–74.Google Scholar
  18. 18.
    Shy M, Fung S, Boone TB, Karmonik C, Fletcher SG, Khavari R. Functional magnetic resonance imaging during urodynamic testing identifies brain structures initiating micturition. J Urol. 2014;192(4):1149–54.Google Scholar
  19. 19.
    Krhut J, Tintera J, Holy P, Zachoval R, Zvara P. A preliminary report on the use of functional magnetic resonance imaging with simultaneous urodynamics to record brain activity during micturition. J Urol. 2012;188(2):474–9.Google Scholar
  20. 20.
    Michels L, Blok BF, Gregorini F, Kurz M, Schurch B, Kessler TM, et al. Supraspinal control of urine storage and micturition in men—an fMRI study. Cereb Cortex. 2015;25(10):3369–80.Google Scholar
  21. 21.
    •• Harvie C, Weissbart SJ, Kadam-Halani P, Rao H, Arya LA. Brain activation during the voiding phase of micturition in healthy adults: a meta-analysis of neuroimaging studies. Clin Anat. 2019;32(1):13–19.  https://doi.org/10.1002/ca.23244. The only meta-analysis and review article on brain centers involved in voiding.
  22. 22.
    Arya NG, Weissbart SJ, Xu S, Bhavsar R, Rao H. Quantitative changes in cerebral perfusion during urinary urgency in women with overactive bladder. Biomed Res Int. 2017;2017:2759035.Google Scholar
  23. 23.
    Khavari R, Elias SN, Boone T, Karmonik C. Similarity of functional connectivity patterns in patients with multiple sclerosis who void spontaneously versus patients with voiding dysfunction. Neurourol Urodyn. 2019;38(1):239–247.  https://doi.org/10.1002/nau.23837.
  24. 24.
    Kleinhans NM, Yang CC, Strachan ED, Buchwald DS, Maravilla KR. Alterations in connectivity on functional magnetic resonance imaging with provocation of lower urinary tract symptoms: a MAPP research network feasibility study of urological chronic pelvic pain syndromes. J Urol. 2016;195(3):639–45.Google Scholar
  25. 25.
    Vahabi B, Wagg AS, Rosier P, Rademakers KLJ, Denys MA, Pontari M, et al. Can we define and characterize the aging lower urinary tract?-ICI-RS 2015. Neurourol Urodyn. 2017;36(4):854–8.Google Scholar
  26. 26.
    Yee CH, Leung C, Wong YY, Lee S, Li J, Kwan P, et al. Lower urinary tract symptoms in subjects with subclinical cerebral white matter lesions. J Aging Res. 2018;2018:1582092.Google Scholar
  27. 27.
    Tadic SD, Griffiths D, Murrin A, Schaefer W, Aizenstein HJ, Resnick NM. Brain activity during bladder filling is related to white matter structural changes in older women with urinary incontinence. NeuroImage. 2010;51(4):1294–302.Google Scholar
  28. 28.
    Kuchel GA, Moscufo N, Guttmann CR, Zeevi N, Wakefield D, Schmidt J, et al. Localization of brain white matter hyperintensities and urinary incontinence in community-dwelling older adults. J Gerontol A Biol Sci Med Sci. 2009;64(8):902–9.Google Scholar
  29. 29.
    Nour S, Svarer C, Kristensen JK, Paulson OB, Law I. Cerebral activation during micturition in normal men. Brain. 2000;123(Pt 4):781–9.Google Scholar
  30. 30.
    Zhang H, Reitz A, Kollias S, Summers P, Curt A, Schurch B. An fMRI study of the role of suprapontine brain structures in the voluntary voiding control induced by pelvic floor contraction. NeuroImage. 2005;24(1):174–80.Google Scholar
  31. 31.
    Schrum A, Wolff S, van der Horst C, Kuhtz-Buschbeck JP. Motor cortical representation of the pelvic floor muscles. J Urol. 2011;186(1):185–90.Google Scholar
  32. 32.
    Dasgupta R, Critchley HD, Dolan RJ, Fowler CJ. Changes in brain activity following sacral neuromodulation for urinary retention. J Urol. 2005;174(6):2268–72.Google Scholar
  33. 33.
    Blok BF, Sturms LM, Holstege G. A PET study on cortical and subcortical control of pelvic floor musculature in women. J Comp Neurol. 1997;389(3):535–44.Google Scholar
  34. 34.
    •• Griffiths D, Clarkson B, Tadic SD, Resnick NM. Brain mechanisms underlying urge incontinence and its response to pelvic floor muscle training. J Urol. 2015;194(3):708–15. One of the first studies using functional neuroimaging to stratify patients to responders versus non responders. Google Scholar
  35. 35.
    Gill BC, Pizarro Berdichevsky J, Bhattacharyya PK, Brink TS, Marks BK, Quirouet A, et al. Real-time changes in brain activity during sacral neuromodulation for overactive bladder. J Urol. 2017198(6):1379–1385.  https://doi.org/10.1016/j.juro.2017.06.074.
  36. 36.
    Weissbart S, Bhavsar R, Detre J, Rao H, Wein A, Arya L, et al. PNFBA-05 specific changes in brain activity in women with overactive bladder after successful sacral neuromodulation with interstim®: an fMRI study. J Urol. 2017;197(4):e610–e1.Google Scholar
  37. 37.
    Dafsari HS, Weiss L, Silverdale M, Rizos A, Reddy P, Ashkan K, et al. Short-term quality of life after subthalamic stimulation depends on non-motor symptoms in Parkinson’s disease. Brain Stimul. 2018;11(4):867–74.Google Scholar
  38. 38.
    Roy HA, Pond D, Roy C, Forrow B, Foltynie T, Zrinzo L, et al. Effects of pedunculopontine nucleus stimulation on human bladder function. Neurourol Urodyn. 2018;37(2):726–34.Google Scholar
  39. 39.
    Odekerken VJ, van Laar T, Staal MJ, Mosch A, Hoffmann CF, Nijssen PC, et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol. 2013;12(1):37–44.Google Scholar
  40. 40.
    Witte LP, Odekerken VJJ, Boel JA, Schuurman PR, Gerbrandy-Schreuders LC, de Bie RMA, et al. Does deep brain stimulation improve lower urinary tract symptoms in Parkinson’s disease? Neurourol Urodyn. 2018;37(1):354–9.Google Scholar
  41. 41.
    Mock S, Osborn DJ, Brown ET, Stuart Reynolds W, Turchan M, Pallavaram S, et al. The impact of pallidal and subthalamic deep brain stimulation on urologic function in Parkinson’s disease. Neuromodulation. 2016;19(7):717–23.Google Scholar
  42. 42.
    Roy HA, Aziz TZ. Deep brain stimulation and multiple sclerosis: therapeutic applications. Mult Scler Relat Disord. 2014;3(4):431–9.Google Scholar
  43. 43.
    Abboud H, Hill E, Siddiqui J, Serra A, Walter B. Neuromodulation in multiple sclerosis. Mult Scler. 2017;23(13):1663–76.Google Scholar
  44. 44.
    Chen SC, Chu PY, Hsieh TH, Li YT, Peng CW. Feasibility of deep brain stimulation for controlling the lower urinary tract functions: an animal study. Clin Neurophysiol. 2017;128(12):2438–49.Google Scholar
  45. 45.
    Rocha I, Burnstock G, Spyer KM. Effect on urinary bladder function and arterial blood pressure of the activation of putative purine receptors in brainstem areas. Auton Neurosci. 2001;88(1–2):6–15.Google Scholar
  46. 46.
    Huerta PT, Volpe BT. Transcranial magnetic stimulation, synaptic plasticity and network oscillations. J Neuroeng Rehabil. 2009;6:7.Google Scholar
  47. 47.
    Fregni F, Pascual-Leone A. Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol. 2007;3(7):383–93.Google Scholar
  48. 48.
    Centonze D, Petta F, Versace V, Rossi S, Torelli F, Prosperetti C, et al. Effects of motor cortex rTMS on lower urinary tract dysfunction in multiple sclerosis. Mult Scler. 2007;13(2):269–71.Google Scholar
  49. 49.
    Brusa L, Finazzi Agro E, Petta F, Sciobica F, Torriero S, Lo Gerfo E, et al. Effects of inhibitory rTMS on bladder function in Parkinson’s disease patients. Mov Disord. 2009;24(3):445–8.Google Scholar
  50. 50.
    Otpushchennikova TV, Kazanskaia IV, Volkov SV, Raigorodskaia IM. Optimization of enuresis therapy in children using transcranial magnetotherapy. Urologiia. 2010;(1):61–2 4-5.Google Scholar
  51. 51.
    Komesu YM, Rogers RG, Sapien RE, Schrader RM, Simmerman-Sierra T, Mayer AR, et al. Methodology for a trial of brain-centered versus anticholinergic therapy in women with urgency urinary incontinence. Int Urogynecol J. 2017;28(6):865–74.Google Scholar
  52. 52.
    Lin CD, Kuo HC, Yang SS. Diagnosis and management of bladder outlet obstruction in women. Low Urin Tract Symptoms. 2016;8(1):30–7.Google Scholar
  53. 53.
    Tiryaki S, Eraslan C, Soyer T, Calli C, Ulman I, Avanoglu A. Non-neuropathic neuropathic bladder: is it really non-neuropathic? J Urol. 2019.  https://doi.org/10.1016/j.juro.2018.09.046.
  54. 54.
    Krhut J, Tintera J, Bilkova K, Holy P, Zachoval R, Zvara P, et al. Brain activity on fMRI associated with urinary bladder filling in patients with a complete spinal cord injury. Neurourol Urodyn. 2017;36(1):155–9.Google Scholar
  55. 55.
    Barbe MF, Gomez-Amaya S, Braverman AS, Brown JM, Lamarre NS, Massicotte VS, et al. Evidence of vagus nerve sprouting to innervate the urinary bladder and clitoris in a canine model of lower motoneuron lesioned bladder. Neurourol Urodyn. 2017;36(1):91–7.Google Scholar
  56. 56.
    Haakma W, Dik P, ten Haken B, Froeling M, Nievelstein RA, Cuppen I, et al. Diffusion tensor magnetic resonance imaging and fiber tractography of the sacral plexus in children with spina bifida. J Urol. 2014;192(3):927–33.Google Scholar
  57. 57.
    Ojha R, George J, Chandy BR, Tharion G, Devasahayam SR. Neuromodulation by surface electrical stimulation of peripheral nerves for reduction of detrusor overactivity in patients with spinal cord injury: a pilot study. J Spinal Cord Med. 2015;38(2):207–13.Google Scholar
  58. 58.
    Knupfer SC, Liechti MD, Mordasini L, Abt D, Engeler DS, Wollner J, et al. Protocol for a randomized, placebo-controlled, double-blind clinical trial investigating sacral neuromodulation for neurogenic lower urinary tract dysfunction. BMC Urol. 2014;14:65.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of UrologyHouston Methodist HospitalHoustonUSA

Personalised recommendations