Advertisement

PCSK9 Inhibition: New Treatment Options and Perspectives to Lower Atherogenic Lipoprotein Particles and Cardiovascular Risk

  • Julia Brandts
  • Dirk Müller-WielandEmail author
Nonstatin Drugs (R. Carmena, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Nonstatin Drugs

Abstract

Purpose of Review

To summarize latest clinical studies and to put them into perspectives for clinical relevant subgroups and new therapeutic options.

Recent Findings

Have investigated PCSK9 inhibitors in patients with very high cardiovascular risk and insufficient LDL cholesterol lowering under current maximal tolerated lipid-lowering therapy, patients with statin intolerance, or genetic forms of familiar hypercholesterolemia, and patients on LDL apheresis. Purpose of recent cardiovascular endpoint trials has proven cardiovascular benefit of this new approach.

Summary

PCSK9 inhibition with fully humanized antibodies has proven to be effective, safe, and well-tolerated in reducing cardiovascular risk by LDL cholesterol lowering. Therefore, research interests are to elucidate additional roles and effects of PCSK9 modulation on inflammation and cellular processes of the atherosclerotic plaque and to develop alternative therapeutic strategies addressing PCSK9 as a proven and therefore promising drug target.

Keywords

PCSK9 Statin intolerance Familiar hypercholesterolemia LDL apheresis LDL receptor Atherosclerosis Hypercholesterolemia Non-HDL cholesterol 

Notes

Summary

A key for cardiovascular risk reduction by lowering LDL cholesterol and load of atherogenic lipoproteins in serum is to increase the number of LDL receptors in the liver. This is a key mechanism of PCSK9 inhibitors. A clinical option is to use antibodies for the treatment of hypercholesterolemia preventing degradation of hepatic LDL receptors.

Compliance with Ethical Standards

Conflict of Interest

Julia Brandts declares no conflict of interest. Dirk Müller-Wieland has received speaker’s bureau and consultant/advisory board fees from Amgen, AstraZeneca, Boehringer Ingelheim, MSD (Merck), Novartis, Novo Nordisk, and Sanofi.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    •• Goldstein JL, Brown MS. A century of cholesterol and coronaries: from plaques to genes to statins. Cell. 2015;161:161–72 Brilliant review about the success story of cholesterol research and prevention of cardiovascular complications.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Goldstein JL, Anderson RGW, Brown MS. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature. 1979;279:679–85.CrossRefPubMedGoogle Scholar
  3. 3.
    Anderson RGW, Brown MS, Goldstein JL. Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts. Cell. 1977;10:351–64.CrossRefPubMedGoogle Scholar
  4. 4.
    Horton JD, Cohen JC, Hobbs HH. PCSK9: a convertase that coordinates LDL catabolism. J Lipid Res. 2009;50:S172–7.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Seidah NG, Awan Z, Chretien M, Mbikay M. PCSK9: a key modulator of cardiovascular health. Circ Res. 2014;114:1022–36.CrossRefPubMedGoogle Scholar
  6. 6.
    Schulz R, Schlüter K-D, Laufs U. Molecular and cellular function of the proprotein convertase subtilisin/kexin type 9 (PCSK9). Basic Res Cardiol. 2015;110:4.  https://doi.org/10.1007/s00395-015-0463-z.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Abifadel M, Varret M, Rabes J-P, Allard D, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34:154–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354:1264–72.CrossRefPubMedGoogle Scholar
  9. 9.
    Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1500–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1489–99.CrossRefPubMedGoogle Scholar
  11. 11.
    Dixon DL, Pamulapati LG, Bucheit JD, Sisson EM, Smith SR, Kim CJ, et al. Recent updates on the use of PCSK9 inhibitors in patients with atherosclerotic cardiovascular disease. Curr Atheroscler Rep. 2019;21:16.  https://doi.org/10.1007/s11883-019-0778-6.CrossRefPubMedGoogle Scholar
  12. 12.
    Nicholls SJ. The new face of hyperlipidemia and the role of PCSK9 inhibitors. Curr Cardiol Rep. 2019;21:18.  https://doi.org/10.1007/s11886-019-1103-2.CrossRefPubMedGoogle Scholar
  13. 13.
    Rosenson RS, Hegele RA, Koenig W. Cholesterol-lowering agents. PCSK9 inhibitors today and tomorrow. Circ Res. 2019;124:364–85.CrossRefPubMedGoogle Scholar
  14. 14.
    Karatasakis A, Daenk BA, Karacsonyi J, et al. Effect of PCSK9 inhibitors on clinical outcomes in patients with hypercholesterolemia: a meta-analysis of 35 randomized controlled trials. J Am Heart Assoc. 2017;6:ee006910.  https://doi.org/10.1161/JAHA.117.006910.CrossRefGoogle Scholar
  15. 15.
    Gugliano RP, Mach F, Zavitz K, et al. EBBINGHAUS investigators: cognitive function in a randomized trial of evolocumab. N Engl J Med. 2017;377:633–43.CrossRefGoogle Scholar
  16. 16.
    Blom DJ, Djedjos CS, Monsalvo ML, Bridges I, Wasserman SM, Scott R, et al. Effects of evolocumab on vitamin E and steroid hormone levels: results from the 52-week, phase 3, double-blind, randomized, placebo-controlled DESCARTES study. Circ Res. 2015;117:731–41.CrossRefPubMedGoogle Scholar
  17. 17.
    Cao YX, Liu HH, Dong QT, Li S, Li JJ. Effect of proprotein convertase subtilisin7kexin type 9 (PCSK9) monoclonal antibodies on new-onset diabetes mellitus and glucose metabolism: a systematic review and meta-analysis. Diabetes Obes Metab. 2018;20:1391–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Colhoun HM, Ginsberg HN, Robinson JG, Leiter LA, Müller-Wieland D, Henry RR, et al. No effect of PCSK9 inhibitor alirocumab on the incidence of diabetes in a pooled analysis from 10 ODYSSEY phase 3 studies. Eur Heart J. 2016;37:2981–9.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Carvalho de LSF, Campos AM, Sposito AC. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors and incident type 2 diabetes: a systematic review and meta-analysis with over 96,000 patient-years. Diabetes Care. 2018;41:364–7.CrossRefGoogle Scholar
  20. 20.
    Jacobson TA, Matthew KI, Kevin CM, et al. NLA National Lipid Association recommendations for patient-centered management of dyslipidemia: part1-executive summary. J Clin Lipidol. 2014;8:473–88.CrossRefPubMedGoogle Scholar
  21. 21.
    Catapano AL, Graham I, De Backer G, et al. 2016 ESC/EAS guidelines for the management of dyslipidaemias. Eur Heart J. 2016;37:2999–3058.  https://doi.org/10.1093/eurheartj/ehw272.CrossRefPubMedGoogle Scholar
  22. 22.
    Lorenatti AJ, Eliaschewitz FG, Chen Y, et al. Randomised study of evolocumab in patients with type 2 diabetes and dyslipidaemia in background statin: primary results of the BERSON clinical trial. Diabetes Obes Metab. 2019;21:1464–73.CrossRefGoogle Scholar
  23. 23.
    Müller-Wieland D, Leiter LA, Cariou B, Letierce A, Colhoun HM, del Prato S, et al. Design and rationale of the ODYSSEY DM-DYSLIPIDEMIA trial: lipid-lowering efficacy and safety of alirocumab in individuals with type 2 diabetes and mixed dyslipidemia at high cardiovascular risk. Cardiovasc Diabetol. 2017;16:70.  https://doi.org/10.1186/s12933-0.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ray KK, Leiter LA, Müller-Wieland D, Cariou B, Colhoun HM, Henry RR, et al. Alirocumab vs usual lipid-lowering care as add-on to statin therapy in individuals with type 2 diabetes and mixed dyslipidemia: the ODYSSEY DM-DYSLIDEMIA randomized trial. Diabetes Obes Metab. 2018;20:1479–89.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Watts GF, Chan DC, Somarantne R, et al. Controlled study of the effect of proprotein convertase subtilisin-kexin type 9 inhibition with evolocumab on lipoprotein (a) particle kinetics. Eur Heart J. 2018;39:2577–85.CrossRefPubMedGoogle Scholar
  26. 26.
    Handelsman Y, Lepor NE. PCSK9 inhibitors in lipid management of patients with diabetes mellitus and high cardiovascular risk: a review. J Am Heart Assoc. 2018;7.  https://doi.org/10.1161/JAHA.118.008953.
  27. 27.
    Sattar N, Preiss D, Robinson JG, Djedjos CS, Elliott M, Somaratne R, et al. Lipid-lowering efficacy of the PCSK9 inhibitor evolocumab (AMG 145) in patients with type 2 diabetes: a meta-analysis of individual patient data. Lancet Diabetes Endocrinol. 2016;4:403–10.CrossRefPubMedGoogle Scholar
  28. 28.
    Ginsberg HN, Farnier M, Robinson JG, Cannon CP, Sattar N, Baccara-Dinet MT, et al. Efficacy and safety of alirocumab in individuals with diabetes mellitus: pooled analyses from five placebo-controlled phase 3 studies. Diabetes Ther. 2018;9:1317–34.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Cariou B, Leiter LA, Müller-Wieland D, Bigot G, Colhoun HM, del Prato S, et al. Efficacy and safety of alirocumab in insulin-treated patients with type 1 or type 2 diabetes and high cardiovascular risk: rational and design of the ODYSSEY DM-INSULIN trial. Diabetes Metab. 2017;43:453–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Henry RR, Müller-Wieland D, Taub PR, Bujas-Bobanovic M, Louie MJ, Letierce A, et al. Effect of alirocumab on lipids and lipoproteins in individuals with metabolic syndrome without diabetes: pooled data from 10 phase 3 trials. Diabetes Obes Metab. 2018;20:1632–41.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Moriarty PM, Thompson PD, Cannon CP, Guyton JR, Bergeron J, Zieve FJ, et al. Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: the ODYSSEY ALTERNATIVE randomized trial. J Clin Lipidol. 2015;9:758–69.CrossRefPubMedGoogle Scholar
  32. 32.
    Stroes E, Colquhoun D, Sullivan D, Civeira F, Rosenson RS, Watts GF, et al. Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: the GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. J Am Coll Cardiol. 2014;63:2541–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Kastelein JJ, Ginsberg HN, Langslet G, et al. ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolemia. Eur Heart J. 2015;43:2996–3003.Google Scholar
  34. 34.
    Raal FJ, Stein EA, Dufour R, Turner T, Civeira F, Burgess L, et al. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolemia: (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385:331–40.CrossRefPubMedGoogle Scholar
  35. 35.
    Raal FJ, Honarpour N, Blom DJ, Hovingh GK, Xu F, Scott R, et al. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA part B): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385:341–50.CrossRefPubMedGoogle Scholar
  36. 36.
    Moriarty PM, Parhofer KG, Babirak SP, deGoma E, Duell PB, Hohenstein B, et al. Alirocumab in patients with heterozygous familial hypercholesterolemia undergoing lipoprotein apheresis: rationale and design of the ODYSSEY ESCAPE trial. J Clin Lipidol. 2016;10:627–34.  https://doi.org/10.1016/j.jacl.2016.02.003.CrossRefPubMedGoogle Scholar
  37. 37.
    Kawashiri MA, Nohara A, Higashikata T, Tada H, Nakanishi C, Okada H, et al. Impact of evolocumab treatment on low-density lipoprotein cholesterol levels in heterozygous familial hypercholesterolemic patients withdrawing from regular apheresis. Atherosclerosis. 2017;265:225–30.CrossRefPubMedGoogle Scholar
  38. 38.
    Ridker PM, Revkin J, Amarenco P, et al. Cardiovascular efficacy and safety of bococizumab in high-risk patients. N Engl J Med. 2017;376:1517–26.CrossRefPubMedGoogle Scholar
  39. 39.
    Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376:1713–22.CrossRefPubMedGoogle Scholar
  40. 40.
    Sabatine MS, Leiter LA, Wiviott SD, Giugliano RP, Deedwania P, de Ferrari GM, et al. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol. 2017;5:941–50.CrossRefPubMedGoogle Scholar
  41. 41.
    Bonaca MP, Nault P, Giugliano RP, Keech AC, Pineda AL, Kanevsky E, et al. Low-density lipoprotein cholesterol lowering with evolocumab and outcomes in patients with peripheral artery disease: insights from the FOURIER trial (further cardiovascular outcomes research with PCSK9 inhibition in subjects with elevated risk). Circulation. 2018;137:338–50.CrossRefPubMedGoogle Scholar
  42. 42.
    • Sabatine MS, De Ferrari GM, Giugliano RP, et al. Clinical benefit of evolocumab by severity and extent of coronary artery disease. Circulation. 2018;138:756–66 Clinical evidence is proven that multivessel coronary heart disease confer very high risk for complications and defines clinically a subgroup benefitting from PCK)-inhibitor treatment efficiently.CrossRefPubMedGoogle Scholar
  43. 43.
    Schwartz GG, Steg PG, Szarek M, Bhatt DL, Bittner VA, Diaz R, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379:2097–107.CrossRefPubMedGoogle Scholar
  44. 44.
    Szarek M, White HD, Schwartz G, Alings M, Bhatt DL, Bittner VA, et al. Alirocumab reduces total nonfatal cardiovascular and fatal events. J Am Coll Cardiol. 2019;73:387–96.CrossRefPubMedGoogle Scholar
  45. 45.
    •• Jukema JW, Szarek M, Zijlstra LE, et al. Patients with recent acute coronary syndrome and polyvascular disease derive large absolute benefit from alirocumab: ODYSSEY OUTCOMES Trial. J Am Coll Cardiol. 2019.  https://doi.org/10.1016/j.jacc.2019.03.013 This study provides direct clinical evidence that patients with clinical relevant atherosclerotic disease in multiple vascular beds have an extreme high absolute risk for cardiovascular complications, proving to be a target population for aggressive LDL cholesterol lowering.CrossRefPubMedGoogle Scholar
  46. 46.
    Stoekenbroek RM, Kallend D, Wijngaard PL, Kastelein JJ. Inclisiran for the treatment of cardiovascular disease: the ORION clinical development program. Futur Cardiol. 2018;14:433–42.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Medicine IUniversity Hospital RWTH AachenAachenGermany

Personalised recommendations