Upregulated LOX-1 Receptor: Key Player of the Pathogenesis of Atherosclerosis

  • Sanjiv SinghEmail author
  • Avtar Singh Gautam
Evidence-Based Medicine (L. Roever, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Evidence Based Medicine


Purpose of Review

In any case, in proatherogenic conditions, LOX-1 is uniquely upregulated in vascular cells and mediates the entire atherogenic process from LDL oxidation to plague arrangement. As evidence supporting the crucial role of LOX-1 in atherogenesis keeps accumulating, there is developing an enthusiasm for LOX-1 as a potential remedial target.

Recent Findings

Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is the major receptor for binding and uptake of oxidized low-density lipoprotein (oxLDL) in endothelial cells. Following internalization of oxLDL, LOX-1 starts a vicious cycle from activation of proinflammatory signaling pathways, subsequently advancing an expanded responsive oxygen species arrangement and secretion of proinflammatory cytokines. In healthy arteries, expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is practically undetectable.


This review portrays existing evidence supporting the role of LOX-1 in mediating of proatherosclerotic impacts of oxLDL which result in endothelial dysfunction, proinflammatory recruitment of monocytes into the arterial intima, arrangement of foam cells, endothelial cell dysfunction and vascular smooth muscle cell proliferation, and platelet enactment, angiogenesis just as in plaque development. Likewise, abridges LOX-1 modulatory compounds and in vivo and in vitro examinations toward the improvement of small molecules and biologics that could be of therapeutic use.


LOX-1 oxLDL Atherogenesis Plaque development Proatherosclerotic 



Lectin-like oxidized low-density lipoprotein receptor-1


Human umbilical vascular endothelial cells


Nitric oxide


Nicotinamide dinucleotide phosphate


Reactive oxygen species




Endothelial nitric oxide synthase


Oxidized low-density lipoprotein


Apolipoprotein E deficient


Human coronary artery endothelial cells


Low-density lipoprotein receptor




Monocyte chemoattractant protein-1


Peroxisome proliferator-activated receptor gamma




Mitogen-activated protein kinase




Vascular endothelial growth factor


Ghrelin receptor-1


Human embryonic kidney cells


Platelet-activating factor acetlyhydrolase


Cyclic adenosine mono-phosphate


Nuclear factor kappa-light-chain-enhancer of activated B cells


Matrix metallopeptidase- 9




Tumor necrosis factor- α


Superoxide dismutase





The authors are thankful to the Department of Pharmaceuticals, Ministry of Chemical and Fertilizers, Govt. of India for providing necessary support to carry out this study.

Compliance with Ethical Standards

Conflict of Interest

Sanjiv Singh, Avtar Singh Gautam declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


  1. 1.
    Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993;362(6423):801–9.PubMedGoogle Scholar
  2. 2.
    Lusis AJ. Atherosclerosis. Nature. 2000;407(6801):233–41.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Libby P. Inflammation in atherosclerosis. Nature. 2002;420(6917):868–74.Google Scholar
  4. 4.
    Zeya B, Arjuman A, Chandra NC. Lectin-like oxidized low-density lipoprotein (LDL) receptor (LOX-1): a chameleon receptor for oxidized LDL. Biochemistry. 2016;55(32):4437–44.PubMedGoogle Scholar
  5. 5.
    Mehta JL, Chen J, Hermonat PL, Romeo F, Novelli G. Lectin-like, oxidized low-density lipoprotein receptor-1 (LOX-1): a critical player in the development of atherosclerosis and related disorders. Cardiovasc Res. 2006;69(1):36–45.PubMedGoogle Scholar
  6. 6.
    Brink R. LOX-1 unlocks human plasma cell potential. Immunity. 2014;41(4):507–8.PubMedGoogle Scholar
  7. 7.
    Lu J, Mitra S, Wang X, Khaidakov M, Mehta JL. Oxidative stress and lectin-like ox-LDL-receptor LOX-1 in atherogenesis and tumorigenesis. Antioxid Redox Signal. 2011;15(8):2301–33.PubMedGoogle Scholar
  8. 8.
    Xu S, Ogura S, Chen J, Little PJ, Moss J, Liu P. LOX-1 in atherosclerosis: biological functions and pharmacological modifiers. Cell Mol Life Sci : CMLS. 2013;70(16):2859–72.PubMedGoogle Scholar
  9. 9.
    Pirillo A, Norata GD, Catapano AL. LOX-1, OxLDL, and atherosclerosis. Mediat Inflamm. 2013;2013:152786.Google Scholar
  10. 10.
    Ikeda H, Takajo Y, Murohara T, Ichiki K, Adachi H, Haramaki N, et al. Platelet-derived nitric oxide and coronary risk factors. Hypertension. 2000;35(4):904–7.PubMedGoogle Scholar
  11. 11.
    Bath PM, Hassall DG, Gladwin AM, Palmer RM, Martin JF. Nitric oxide and prostacyclin. Divergence of inhibitory effects on monocyte chemotaxis and adhesion to endothelium in vitro. Arterioscler Thromb. 1991;11(2):254–60.PubMedGoogle Scholar
  12. 12.
    Chen M, Masaki T, Sawamura T. LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: implications in endothelial dysfunction and atherosclerosis. Pharmacol Ther. 2002;95(1):89–100.PubMedGoogle Scholar
  13. 13.
    Kataoka H, Kume N, Miyamoto S, Minami M, Moriwaki H, Murase T, et al. Expression of lectinlike oxidized low-density lipoprotein receptor-1 in human atherosclerotic lesions. Circulation. 1999;99(24):3110–7.PubMedGoogle Scholar
  14. 14.
    Kume N, Kita T. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in atherogenesis. Trends Cardiovasc Med. 2001;11(1):22–5.PubMedGoogle Scholar
  15. 15.
    Mitra S, Goyal T, Mehta JL. Oxidized LDL, LOX-1 and atherosclerosis. Cardiovasc Drugs Ther. 2011;25(5):419–29.PubMedGoogle Scholar
  16. 16.
    Pirillo A, Uboldi P, Ferri N, Corsini A, Kuhn H, Catapano AL. Upregulation of lectin-like oxidized low density lipoprotein receptor 1 (LOX-1) expression in human endothelial cells by modified high density lipoproteins. Biochem Biophys Res Commun. 2012;428(2):230–3.PubMedGoogle Scholar
  17. 17.
    Shiu SW, Tan KC, Wong Y, Leng L, Bucala R. Glycoxidized LDL increases lectin-like oxidized low density lipoprotein receptor-1 in diabetes mellitus. Atherosclerosis. 2009;203(2):522–7.PubMedGoogle Scholar
  18. 18.
    Morawietz H, Duerrschmidt N, Niemann B, Galle J, Sawamura T, Holtz J. Augmented endothelial uptake of oxidized low-density lipoprotein in response to endothelin-1. Clin Sci (Lond). 2002;103(Suppl 48):9s–12s.Google Scholar
  19. 19.
    Kattoor AJ, Pothineni NVK, Palagiri D, Mehta JL. Oxidative stress in atherosclerosis. Curr Atheroscler Rep. 2017;19(11):42.PubMedGoogle Scholar
  20. 20.
    Cominacini L, Pasini AF, Garbin U, Davoli A, Tosetti ML, Campagnola M, et al. Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species. J Biol Chem. 2000;275(17):12633–8.PubMedGoogle Scholar
  21. 21.
    Chen XP, Xun KL, Wu Q, Zhang TT, Shi JS, Du GH. Oxidized low density lipoprotein receptor-1 mediates oxidized low density lipoprotein-induced apoptosis in human umbilical vein endothelial cells: role of reactive oxygen species. Vasc Pharmacol. 2007;47(1):1–9.Google Scholar
  22. 22.
    Cominacini L, Fratta Pasini A, Garbin U, Pastorino A, Rigoni A, Nava C, et al. The platelet-endothelium interaction mediated by lectin-like oxidized low-density lipoprotein receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells. J Am Coll Cardiol. 2003;41(3):499–507.PubMedGoogle Scholar
  23. 23.
    Rueckschloss U, Galle J, Holtz J, Zerkowski HR, Morawietz H. Induction of NAD(P)H oxidase by oxidized low-density lipoprotein in human endothelial cells: antioxidative potential of hydroxymethylglutaryl coenzyme a reductase inhibitor therapy. Circulation. 2001;104(15):1767–72.PubMedGoogle Scholar
  24. 24.
    Ou HC, Song TY, Yeh YC, Huang CY, Yang SF, Chiu TH, et al. EGCG protects against oxidized LDL-induced endothelial dysfunction by inhibiting LOX-1-mediated signaling. J Appl Physiol (Bethesda, Md : 1985). 2010;108(6):1745–56.Google Scholar
  25. 25.
    Shi Y, Cosentino F, Camici GG, Akhmedov A, Vanhoutte PM, Tanner FC, et al. Oxidized low-density lipoprotein activates p66Shc via lectin-like oxidized low-density lipoprotein receptor-1, protein kinase C-beta, and c-Jun N-terminal kinase kinase in human endothelial cells. Arterioscler Thromb Vasc Biol. 2011;31(9):2090–7.PubMedGoogle Scholar
  26. 26.
    Thum T, Borlak J. LOX-1 receptor blockade abrogates oxLDL-induced oxidative DNA damage and prevents activation of the transcriptional repressor Oct-1 in human coronary arterial endothelium. J Biol Chem. 2008;283(28):19456–64.PubMedGoogle Scholar
  27. 27.
    Chen J, Liu Y, Liu H, Hermonat PL, Mehta JL. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) transcriptional regulation by Oct-1 in human endothelial cells: implications for atherosclerosis. Biochem J. 2006;393(Pt 1):255–65.PubMedGoogle Scholar
  28. 28.
    Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis (*). Annu Rev Immunol. 2009;27:165–97.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Li D, Mehta JL. Antisense to LOX-1 inhibits oxidized LDL-mediated upregulation of monocyte chemoattractant protein-1 and monocyte adhesion to human coronary artery endothelial cells. Circulation. 2000;101(25):2889–95.PubMedGoogle Scholar
  30. 30.
    Mattaliano MD, Huard C, Cao W, Hill AA, Zhong W, Martinez RV, et al. LOX-1-dependent transcriptional regulation in response to oxidized LDL treatment of human aortic endothelial cells. Am J Physiol Cell Physiol. 2009;296(6):C1329–37.PubMedGoogle Scholar
  31. 31.
    Li D, Chen H, Romeo F, Sawamura T, Saldeen T, Mehta JL. Statins modulate oxidized low-density lipoprotein-mediated adhesion molecule expression in human coronary artery endothelial cells: role of LOX-1. J Pharmacol Exp Ther. 2002;302(2):601–5.PubMedGoogle Scholar
  32. 32.
    Zhu H, Xia M, Hou M, et al. Ox-LDL plays dual effect in modulating expression of inflammatory molecules through LOX-1 pathway in human umbilical vein endothelial cells. Front Biosci. 2005;10:2585–94.PubMedGoogle Scholar
  33. 33.
    Pirillo A, Reduzzi A, Ferri N, Kuhn H, Corsini A, Catapano AL. Upregulation of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) by 15-lipoxygenase-modified LDL in endothelial cells. Atherosclerosis. 2011;214(2):331–7.PubMedGoogle Scholar
  34. 34.
    Lievens D, Eijgelaar WJ, Biessen EA, Daemen MJ, Lutgens E. The multi-functionality of CD40L and its receptor CD40 in atherosclerosis. Thromb Haemost. 2009;102(2):206–14.PubMedGoogle Scholar
  35. 35.
    Li D, Liu L, Chen H, Sawamura T, Mehta JL. LOX-1, an oxidized LDL endothelial receptor, induces CD40/CD40L signaling in human coronary artery endothelial cells. Arterioscler Thromb Vasc Biol. 2003;23(5):816–21.PubMedGoogle Scholar
  36. 36.
    Bobryshev YV, Ivanova EA, Chistiakov DA, Nikiforov NG, Orekhov AN. Macrophages and their role in atherosclerosis: pathophysiology and transcriptome analysis. Biomed Res Int. 2016;2016:9582430.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Sakurai K, Cominacini L, Garbin U, Fratta Pasini A, Sasaki N, Takuwa Y, et al. Induction of endothelin-1 production in endothelial cells via co-operative action between CD40 and lectin-like oxidized LDL receptor (LOX-1). J Cardiovasc Pharmacol. 2004;44(Suppl 1):S173–80.PubMedGoogle Scholar
  38. 38.
    Schaeffer DF, Riazy M, Parhar KS, Chen JH, Duronio V, Sawamura T, et al. LOX-1 augments oxLDL uptake by lysoPC-stimulated murine macrophages but is not required for oxLDL clearance from plasma. J Lipid Res. 2009;50(8):1676–84.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Li D, Mehta JL. Intracellular signaling of LOX-1 in endothelial cell apoptosis. Circ Res. 2009;104(5):566–8.PubMedGoogle Scholar
  40. 40.
    Moriwaki H, Kume N, Kataoka H, Murase T, Nishi E, Sawamura T, et al. Expression of lectin-like oxidized low density lipoprotein receptor-1 in human and murine macrophages: upregulated expression by TNF-alpha. FEBS Lett. 1998;440(1–2):29–32.PubMedGoogle Scholar
  41. 41.
    Ishiyama J, Taguchi R, Yamamoto A, Murakami K. Palmitic acid enhances lectin-like oxidized LDL receptor (LOX-1) expression and promotes uptake of oxidized LDL in macrophage cells. Atherosclerosis. 2010;209(1):118–24.PubMedGoogle Scholar
  42. 42.
    Li L, Sawamura T, Renier G. Glucose enhances human macrophage LOX-1 expression: role for LOX-1 in glucose-induced macrophage foam cell formation. Circ Res. 2004;94(7):892–901.PubMedGoogle Scholar
  43. 43.
    Bobryshev YV. Dendritic cells in atherosclerosis: current status of the problem and clinical relevance. Eur Heart J. 2005;26(17):1700–4.PubMedGoogle Scholar
  44. 44.
    Perrin-Cocon L, Coutant F, Agaugue S, Deforges S, Andre P, Lotteau V. Oxidized low-density lipoprotein promotes mature dendritic cell transition from differentiating monocyte. J Immunol (Baltimore, Md : 1950). 2001;167(7):3785–91.Google Scholar
  45. 45.
    Nickel T, Hanssen H, Sisic Z, Pfeiler S, Summo C, Schmauss D, et al. Immunoregulatory effects of the flavonol quercetin in vitro and in vivo. Eur J Nutr. 2011;50(3):163–72.PubMedGoogle Scholar
  46. 46.
    Nickel T, Schmauss D, Hanssen H, Sicic Z, Krebs B, Jankl S, et al. oxLDL uptake by dendritic cells induces upregulation of scavenger-receptors, maturation and differentiation. Atherosclerosis. 2009;205(2):442–50.PubMedGoogle Scholar
  47. 47.
    Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109(23 Suppl 1):Iii27–32.PubMedGoogle Scholar
  48. 48.
    Xu F, Sun Y, Chen Y, Sun Y, Li R, Liu C, et al. Endothelial cell apoptosis is responsible for the formation of coronary thrombotic atherosclerotic plaques. Tohoku J Exp Med. 2009;218(1):25–33.PubMedGoogle Scholar
  49. 49.
    Chen J, Mehta JL, Haider N, Zhang X, Narula J, Li D. Role of caspases in Ox-LDL-induced apoptotic cascade in human coronary artery endothelial cells. Circ Res. 2004;94(3):370–6.PubMedGoogle Scholar
  50. 50.
    Imanishi T, Hano T, Sawamura T, Takarada S, Nishio I. Oxidized low density lipoprotein potentiation of Fas-induced apoptosis through lectin-like oxidized-low density lipoprotein receptor-1 in human umbilical vascular endothelial cells. Circ J. 2002;66(11):1060–4.PubMedGoogle Scholar
  51. 51.
    Hong D, Bai YP, Gao HC, Wang X, Li LF, Zhang GG, et al. Ox-LDL induces endothelial cell apoptosis via the LOX-1-dependent endoplasmic reticulum stress pathway. Atherosclerosis. 2014;235(2):310–7.PubMedGoogle Scholar
  52. 52.
    Cominacini L, Rigoni A, Pasini AF, Garbin U, Davoli A, Campagnola M, et al. The binding of oxidized low density lipoprotein (ox-LDL) to ox-LDL receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells through an increased production of superoxide. J Biol Chem. 2001;276(17):13750–5.PubMedGoogle Scholar
  53. 53.
    Blair A, Shaul PW, Yuhanna IS, Conrad PA, Smart EJ. Oxidized low density lipoprotein displaces endothelial nitric-oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation. J Biol Chem. 1999;274(45):32512–9.PubMedGoogle Scholar
  54. 54.
    Akhmedov A, Rozenberg I, Paneni F, Camici GG, Shi Y, Doerries C, et al. Endothelial overexpression of LOX-1 increases plaque formation and promotes atherosclerosis in vivo. Eur Heart J. 2014;35(40):2839–48.PubMedGoogle Scholar
  55. 55.
    Mehta JL, Sanada N, Hu CP, Chen J, Dandapat A, Sugawara F, et al. Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet. Circ Res. 2007;100(11):1634–42.PubMedGoogle Scholar
  56. 56.
    Keman K, Rahardjo B, Madakusuma D. OS076. The effect of lectin-like oxidized low density lipoprotein receptor monoclonal antibody (LOX-1 MAb) on the expression of eNOS in preeclamptic HUVECs model. Pregnancy Hypertens. 2012;2(3):218–9.PubMedGoogle Scholar
  57. 57.
    Sawamura T, Kume N, Aoyama T, Moriwaki H, Hoshikawa H, Aiba Y, et al. An endothelial receptor for oxidized low-density lipoprotein. Nature. 1997;386(6620):73–7.PubMedGoogle Scholar
  58. 58.
    Silverstein RL, Nachman RL. Angiogenesis and atherosclerosis. The mandate broadens. Circulation. 1999;100(8):783–5.PubMedGoogle Scholar
  59. 59.
    Slevin M, Krupinski J, Badimon L. Controlling the angiogenic switch in developing atherosclerotic plaques: possible targets for therapeutic intervention. J Angiogenes Res. 2009;1:4–4.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Pitsilos S, Hunt J, Mohler ER, Prabhakar A, Poncz M, Dawicki J, et al. Platelet factor 4 localization in carotid atherosclerotic plaques: correlation with clinical parameters. Thromb Haemost. 2003;90(6):1112–20.PubMedGoogle Scholar
  61. 61.
    Matsunaga T, Chilian WM, March K. Angiostatin is negatively associated with coronary collateral growth in patients with coronary artery disease. Am J Phys Heart Circ Phys. 2005;288(5):H2042–6.Google Scholar
  62. 62.
    Dandapat A, Hu C, Sun L, Mehta JL. Small concentrations of oxLDL induce capillary tube formation from endothelial cells via LOX-1-dependent redox-sensitive pathway. Arterioscler Thromb Vasc Biol. 2007;27(11):2435–42.PubMedGoogle Scholar
  63. 63.
    Khaidakov M, Mitra S, Wang X, Ding Z, Bora N, Lyzogubov V, et al. Large impact of low concentration oxidized LDL on angiogenic potential of human endothelial cells: a microarray study. PLoS One. 2012;7(10):–e47421.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Dai Y, Zhang Z, Cao Y, Mehta JL, Li J. MiR-590-5p inhibits oxidized- LDL induced angiogenesis by targeting LOX-1. Sci Rep. 2016;6:22607.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Camaré C, Trayssac M, Garmy-Susini B, Mucher E, Sabbadini R, Salvayre R, et al. Oxidized LDL-induced angiogenesis involves sphingosine 1-phosphate: prevention by anti-S1P antibody. Br J Pharmacol. 2015;172(1):106–18.PubMedGoogle Scholar
  66. 66.
    Camare C, Auge N, Pucelle M, et al. The neutral sphingomyelinase-2 is involved in angiogenic signaling triggered by oxidized LDL. Free Radic Biol Med. 2016;93:204–16.PubMedGoogle Scholar
  67. 67.
    Hu C, Dandapat A, Sun L, Khan JA, Liu Y, Hermonat PL, et al. Regulation of TGFbeta1-mediated collagen formation by LOX-1: studies based on forced overexpression of TGFbeta1 in wild-type and lox-1 knock-out mouse cardiac fibroblasts. J Biol Chem. 2008;283(16):10226–31.PubMedGoogle Scholar
  68. 68.
    Mulligan-Kehoe MJ, Simons M. Vasa vasorum in normal and diseased arteries. Circulation. 2014;129(24):2557–66.PubMedGoogle Scholar
  69. 69.
    Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK, et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med. 2003;349(24):2316–25.PubMedGoogle Scholar
  70. 70.
    Moreno PR, Purushothaman KR, Sirol M, Levy AP, Fuster V. Neovascularization in human atherosclerosis. Circulation. 2006;113(18):2245–52.PubMedGoogle Scholar
  71. 71.
    Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114(12):1852–66.PubMedGoogle Scholar
  72. 72.
    Hu C, Dandapat A, Sun L, Chen J, Marwali MR, Romeo F, et al. LOX-1 deletion decreases collagen accumulation in atherosclerotic plaque in low-density lipoprotein receptor knockout mice fed a high-cholesterol diet. Cardiovasc Res. 2008;79(2):287–93.PubMedGoogle Scholar
  73. 73.
    Aukrust P, Halvorsen B, Ueland T, Michelsen AE, Skjelland M, Gullestad L, et al. Activated platelets and atherosclerosis. Expert Rev Cardiovasc Ther. 2010;8(9):1297–307.PubMedGoogle Scholar
  74. 74.
    Chen M, Kakutani M, Naruko T, Ueda M, Narumiya S, Masaki T, et al. Activation-dependent surface expression of LOX-1 in human platelets. Biochem Biophys Res Commun. 2001;282(1):153–8.PubMedGoogle Scholar
  75. 75.
    Marwali MR, Hu CP, Mohandas B, Dandapat A, Deonikar P, Chen J, et al. Modulation of ADP-induced platelet activation by aspirin and pravastatin: role of lectin-like oxidized low-density lipoprotein receptor-1, nitric oxide, oxidative stress, and inside-out integrin signaling. J Pharmacol Exp Ther. 2007;322(3):1324–32.PubMedGoogle Scholar
  76. 76.
    Kakutani M, Masaki T, Sawamura T. A platelet–endothelium interaction mediated by lectin-like oxidized low-density lipoprotein receptor-1. Proc Natl Acad Sci. 2000;97(1):360–4.PubMedGoogle Scholar
  77. 77.
    Chistiakov DA, Orekhov AN, Bobryshev YV. Endothelial barrier and its abnormalities in cardiovascular disease. Front Physiol. 2015;6:365.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Kume N, Moriwaki H, Kataoka H, Minami M, Murase T, Sawamura T, et al. Inducible expression of LOX-1, a novel receptor for oxidized LDL, in macrophages and vascular smooth muscle cells. Ann N Y Acad Sci. 2000;902:323–7.PubMedGoogle Scholar
  79. 79.
    Rudijanto A. The expression and down stream effect of lectin like-oxidized low density lipoprotein 1 (LOX-1) in hyperglycemic state. Acta Med Indones. 2007;39(1):36–43.PubMedGoogle Scholar
  80. 80.
    Favari E, Chroni A, Tietge UJ, Zanotti I, Escola-Gil JC, Bernini F. Cholesterol efflux and reverse cholesterol transport. Handb Exp Pharmacol. 2015;224:181–206.PubMedGoogle Scholar
  81. 81.
    Yoshida H, Kondratenko N, Green S, Steinberg D, Quehenberger O. Identification of the lectin-like receptor for oxidized low-density lipoprotein in human macrophages and its potential role as a scavenger receptor. Biochem J. 1998;334 ( Pt 1:9–13.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Inoue K, Arai Y, Kurihara H, Kita T, Sawamura T. Overexpression of lectin-like oxidized low-density lipoprotein receptor-1 induces intramyocardial vasculopathy in apolipoprotein E-null mice. Circ Res. 2005;97(2):176–84.PubMedGoogle Scholar
  83. 83.
    Ding Z, Liu S, Wang X, Deng X, Fan Y, Shahanawaz J, et al. Cross-talk between LOX-1 and PCSK9 in vascular tissues. Cardiovasc Res. 2015;107(4):556–67.PubMedGoogle Scholar
  84. 84.
    Kuge Y, Kume N, Ishino S, Takai N, Ogawa Y, Mukai T, et al. Prominent lectin-like oxidized low density lipoprotein (LDL) receptor-1 (LOX-1) expression in atherosclerotic lesions is associated with tissue factor expression and apoptosis in hypercholesterolemic rabbits. Biol Pharm Bull. 2008;31(8):1475–82.PubMedGoogle Scholar
  85. 85.
    Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res. 2016;118(4):692–702.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Eto H, Miyata M, Kume N, Minami M, Itabe H, Orihara K, et al. Expression of lectin-like oxidized LDL receptor-1 in smooth muscle cells after vascular injury. Biochem Biophys Res Commun. 2006;341(2):591–8.PubMedGoogle Scholar
  87. 87.
    Hinagata J, Kakutani M, Fujii T, et al. Oxidized LDL receptor LOX-1 is involved in neointimal hyperplasia after balloon arterial injury in a rat model. Cardiovasc Res. 2006;69(1):263–71.PubMedGoogle Scholar
  88. 88.
    Kataoka H, Kume N, Miyamoto S, Minami M, Morimoto M, Hayashida K, et al. Oxidized LDL modulates Bax/Bcl-2 through the lectinlike Ox-LDL receptor-1 in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2001;21(6):955–60.PubMedGoogle Scholar
  89. 89.
    Murugesan G, Fox PL. Role of lysophosphatidylcholine in the inhibition of endothelial cell motility by oxidized low density lipoprotein. J Clin Invest. 1996;97(12):2736–44.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Aoyama T, Chen M, Fujiwara H, Masaki T, Sawamura T. LOX-1 mediates lysophosphatidylcholine-induced oxidized LDL uptake in smooth muscle cells. FEBS Lett. 2000;467(2–3):217–20.PubMedGoogle Scholar
  91. 91.
    Klouche M, Rose-John S, Schmiedt W, Bhakdi S. Enzymatically degraded, nonoxidized LDL induces human vascular smooth muscle cell activation, foam cell transformation, and proliferation. Circulation. 2000;101(15):1799–805.PubMedGoogle Scholar
  92. 92.
    Chen XP, Zhang TT, Du GH. Lectin-like oxidized low-density lipoprotein receptor-1, a new promising target for the therapy of atherosclerosis? Cardiovasc Drug Rev. 2007;25(2):146–61.PubMedGoogle Scholar
  93. 93.
    Lee WJ, Ou HC, Hsu WC, Chou MM, Tseng JJ, Hsu SL, et al. Ellagic acid inhibits oxidized LDL-mediated LOX-1 expression, ROS generation, and inflammation in human endothelial cells. J Vasc Surg. 2010;52(5):1290–300.PubMedGoogle Scholar
  94. 94.
    Gu L, Bai W, Li S, Zhang Y, Han Y, Gu Y, et al. Celastrol prevents atherosclerosis via inhibiting LOX-1 and oxidative stress. PLoS One. 2013;8(6):–e65477.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Taye A, Saad AH, Kumar AH, Morawietz H. Effect of apocynin on NADPH oxidase-mediated oxidative stress-LOX-1-eNOS pathway in human endothelial cells exposed to high glucose. Eur J Pharmacol. 2010;627(1–3):42–8.PubMedGoogle Scholar
  96. 96.
    Xu S, Liu Z, Huang Y, Le K, Tang F, Huang H, et al. Tanshinone II-A inhibits oxidized LDL-induced LOX-1 expression in macrophages by reducing intracellular superoxide radical generation and NF-kappaB activation. Transl Res. 2012;160(2):114–24.PubMedGoogle Scholar
  97. 97.
    Mehta JL, Hu B, Chen J, Li D. Pioglitazone inhibits LOX-1 expression in human coronary artery endothelial cells by reducing intracellular superoxide radical generation. Arterioscler Thromb Vasc Biol. 2003;23(12):2203–8.PubMedGoogle Scholar
  98. 98.
    Lu L, Liu H, Peng J, Gan L, Shen L, Zhang Q, et al. Regulations of the key mediators in inflammation and atherosclerosis by aspirin in human macrophages. Lipids Health Dis. 2010;9:16.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Song Q, Zhang Y, Han X, et al. Potential mechanisms underlying the protective effects of salvianic acid a against atherosclerosis in vivo and vitro. Biomed Pharmacother. 2019;109:945–56.PubMedGoogle Scholar
  100. 100.
    Liu TT, Zeng Y, Tang K, Chen X, Zhang W, Xu XL. Dihydromyricetin ameliorates atherosclerosis in LDL receptor deficient mice. Atherosclerosis. 2017;262:39–50.PubMedGoogle Scholar
  101. 101.
    Liu Z, Xu S, Huang X, Wang J, Gao S, Li H, et al. Cryptotanshinone, an orally bioactive herbal compound from Danshen, attenuates atherosclerosis in apolipoprotein E-deficient mice: role of lectin-like oxidized LDL receptor-1 (LOX-1). Br J Pharmacol. 2015;172(23):5661–75.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Li Q, Zhao W, Zeng X, Hao Z. Ursolic acid attenuates atherosclerosis in ApoE(−/−) mice: role of LOX-1 mediated by ROS/NF-kappaB pathway. Molecules. 2018;23(5):1101–12.PubMedCentralGoogle Scholar
  103. 103.
    Liu SL, Li YH, Shi GY, Chen YH, Huang CW, Hong JS, et al. A novel inhibitory effect of naloxone on macrophage activation and atherosclerosis formation in mice. J Am Coll Cardiol. 2006;48(9):1871–9.PubMedGoogle Scholar
  104. 104.
    Mohana T, Navin AV, Jamuna S, Sakeena Sadullah MS, Niranjali Devaraj S. Inhibition of differentiation of monocyte to macrophages in atherosclerosis by oligomeric proanthocyanidins -in-vivo and in-vitro study. Food Chem Toxicol. 2015;82:96–105.PubMedGoogle Scholar
  105. 105.
    Zheng J, Liu B, Lun Q, et al. Longxuetongluo capsule inhibits atherosclerosis progression in high-fat diet-induced ApoE−/− mice by improving endothelial dysfunction. 2016;255:156–63.Google Scholar
  106. 106.
    Minatti J, Wazlawik E, Hort MA, Zaleski FL, Ribeiro-do-Valle RM, Maraschin M, et al. Green tea extract reverses endothelial dysfunction and reduces atherosclerosis progression in homozygous knockout low-density lipoprotein receptor mice. Nutr Res. 2012;32(9):684–93.PubMedGoogle Scholar
  107. 107.
    Van der Veken B, De Meyer GRY, Martinet W. Axitinib attenuates intraplaque angiogenesis, haemorrhages and plaque destabilization in mice. Vasc Pharmacol. 2018;100:34–40.Google Scholar
  108. 108.
    Wang L, Li G, Chen Q, Ke D. Octanoylated ghrelin attenuates angiogenesis induced by oxLDL in human coronary artery endothelial cells via the GHSR1a-mediated NF-kappaB pathway. Metabolism. 2015;64(10):1262–71.PubMedGoogle Scholar
  109. 109.
    Biocca S, Iacovelli F, Matarazzo S, Vindigni G, Oteri F, Desideri A, et al. Molecular mechanism of statin-mediated LOX-1 inhibition. Cell Cycle. 2015;14(10):1583–95.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Zhang H, Guo C, Zhang A, Fan Y, Gu T, Wu D, et al. Effect of S-aspirin, a novel hydrogen-sulfide-releasing aspirin (ACS14), on atherosclerosis in apoE-deficient mice. Eur J Pharmacol. 2012;697(1–3):106–16.PubMedGoogle Scholar
  111. 111.
    Becher T, Schulze TJ, Schmitt M, Trinkmann F, el-Battrawy I, Akin I, et al. Ezetimibe inhibits platelet activation and uPAR expression on endothelial cells. Int J Cardiol. 2017;227:858–62.PubMedGoogle Scholar
  112. 112.
    Wojcicka G, Zareba M, Warpas A, et al. The effect of exenatide (a GLP-1 analog) and sitagliptin (a DPP-4 inhibitor) on plasma platelet-activating factor acetylhydrolase (PAF-AH) activity and concentration in normal and fructose-fed rats. Eur J Pharmacol. 2019;850:180–9.PubMedGoogle Scholar
  113. 113.
    Lee HS, Kim SD, Lee WM, Endale M, Kamruzzaman SM, Oh WJ, et al. A noble function of BAY 11-7082: inhibition of platelet aggregation mediated by an elevated cAMP-induced VASP, and decreased ERK2/JNK1 phosphorylations. Eur J Pharmacol. 2010;627(1–3):85–91.PubMedGoogle Scholar
  114. 114.
    Alarcon M, Fuentes E, Olate N, Navarrete S, Carrasco G, Palomo I. Strawberry extract presents antiplatelet activity by inhibition of inflammatory mediator of atherosclerosis (sP-selectin, sCD40L, RANTES, and IL-1beta) and thrombus formation. Platelets. 2015;26(3):224–9.PubMedGoogle Scholar
  115. 115.
    Lien L-M, Lin K-H, Huang L-T, Tseng MF, Chiu HC, Chen RJ, et al. Licochalcone A prevents platelet activation and thrombus formation through the inhibition of PLCγ2-PKC, Akt, and MAPK pathways. Int J Mol Sci. 2017;18(7):1500.PubMedCentralGoogle Scholar
  116. 116.
    Qin L, Yang YB, Yang YX, Zhu N, Liu Z, Ni YG, et al. Inhibition of macrophage-derived foam cell formation by ezetimibe via the caveolin-1/MAPK pathway. Clin Exp Pharmacol Physiol. 2016;43(2):182–92.PubMedGoogle Scholar
  117. 117.
    Yao W, Huang L, Sun Q, Yang L, Tang L, Meng G, et al. The inhibition of macrophage foam cell formation by tetrahydroxystilbene glucoside is driven by suppressing vimentin cytoskeleton. Biomed Pharmacother. 2016;83:1132–40.PubMedGoogle Scholar
  118. 118.
    Plotkin JD, Elias MG, Dellinger AL, Kepley CL. NF-kappaB inhibitors that prevent foam cell formation and atherosclerotic plaque accumulation. Nanomedicine. 2017;13(6):2037–48.PubMedGoogle Scholar
  119. 119.
    Wang Z, Wang S, Wang Z, Yun T, Wang C, Wang H. Tofacitinib ameliorates atherosclerosis and reduces foam cell formation in apoE deficient mice. Biochem Biophys Res Commun. 2017;490(2):194–201.PubMedGoogle Scholar
  120. 120.
    Zhang Z, Zhang D, Du B, Chen Z. Hyperoside inhibits the effects induced by oxidized low-density lipoprotein in vascular smooth muscle cells via oxLDL-LOX-1-ERK pathway. Mol Cell Biochem. 2017;433(1–2):169–76.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Yu YH, Xu XQ, Wang Y, Sun SZ, Chen Y. Intervention of Tongxinluo capsule against vascular lesion of atherosclerosis and its effect on lectin-like oxidized low density lipoprotein receptor-1 expression in rabbits. Chin J Integr Med. 2006;12(1):32–6.PubMedGoogle Scholar
  122. 122.
    Zhang Z, Zhang M, Li Y, Liu S, Ping S, Wang J, et al. Simvastatin inhibits the additive activation of ERK1/2 and proliferation of rat vascular smooth muscle cells induced by combined mechanical stress and oxLDL through LOX-1 pathway. Cell Signal. 2013;25(1):332–40.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial AreaBiharIndia

Personalised recommendations