Advertisement

Subclinical Cerebrovascular Disease: Epidemiology and Treatment

  • Adam de HavenonEmail author
  • Chelsea Meyer
  • J. Scott McNally
  • Matthew Alexander
  • Lee Chung
Cardiovascular Disease and Stroke (S. Prabhakaran, Section Editor)
  • 137 Downloads
Part of the following topical collections:
  1. Topical Collection on Cardiovascular Disease and Stroke

Abstract

Purpose of Review

Subclinical cerebrovascular disease (sCVD) is highly prevalent in older adults. The main neuroimaging findings of sCVD include white matter hyperintensities and silent brain infarcts on T2-weighted MRI and cerebral microbleeds on gradient echo or susceptibility-weighted MRI. In this paper, we will review the epidemiology of sCVD, the current evidence for best medical management, and future directions for sCVD research.

Recent Findings

Numerous epidemiologic studies show that sCVD, in particular WMH, is an important risk factor for the development of dementia, stroke, worse outcomes after stroke, gait instability, late-life depression, and death. Effective treatment of sCVD could have major consequences for the brain health of a substantial portion of older Americans. Despite the link between sCVD and many vascular risk factors, such as hypertension or hyperlipidemia, the optimal medical treatment of sCVD remains uncertain.

Summary

Given the clinical equipoise about the risk versus benefit of aggressive medical management for sCVD, clinical trials to examine pragmatic, evidence-based approaches to management of sCVD are needed. Such a trial could provide much needed guidance on how to manage a common clinical scenario facing internists and neurologists in practice.

Keywords

Subclinical cerebrovascular disease White matter hyperintensity Silent cerebral infarct Cerebral microbleed 

Notes

Funding Information

Dr. de Havenon, NIH/NINDS K23NS105924.

Compliance with Ethical Standards

Conflict of Interest

Adam de Havenon, Chelsea Meyer, J. Scott McNally, Matthew Alexander, and Lee Chung declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. 1.
    Bryan RN, Cai J, Burke G, Hutchinson RG, Liao D, Toole JF, et al. Prevalence and anatomic characteristics of infarct-like lesions on MR images of middle-aged adults: the atherosclerosis risk in communities study. AJNR Am J Neuroradiol. 1999;20(7):1273–80.PubMedGoogle Scholar
  2. 2.
    Liao D, Cooper L, Cai J, Toole JF, Bryan NR, Hutchinson RG, et al. Presence and severity of cerebral white matter lesions and hypertension, its treatment, and its control: the ARIC study. Stroke. 1996;27(12):2262–70.CrossRefPubMedGoogle Scholar
  3. 3.
    Poels MMF, Ikram MA, van der Lugt A, Hofman A, Krestin GP, Breteler MMB, et al. Incidence of cerebral microbleeds in the general population: the Rotterdam scan study. Stroke. 2011;42(3):656–61.CrossRefPubMedGoogle Scholar
  4. 4.
    Debette S, Schilling S, Duperron M-G, Larsson SC, Markus HS. Clinical significance of magnetic resonance imaging markers of vascular brain injury: a systematic review and meta-analysis. JAMA Neurol. 2019;76(1):81–94.CrossRefPubMedGoogle Scholar
  5. 5.
    Prabhakaran S, Wright CB, Yoshita M, Delapaz R, Brown T, DeCarli C, et al. Prevalence and determinants of subclinical brain infarction: the northern Manhattan study. Neurology. 2008;70(6):425–30.CrossRefPubMedGoogle Scholar
  6. 6.
    Vermeer SE, Hollander M, van Dijk EJ, Hofman A, Koudstaal PJ, Breteler MMB, et al. Silent brain infarcts and white matter lesions increase stroke risk in the general population: the Rotterdam Scan Study. Stroke. 2003;34(5):1126–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Kawamoto A, Shimada K, Matsubayashi K, Nishinaga M, Kimura S, Ozawa T. Factors associated with silent multiple lacunar lesions on magnetic resonance imaging in asymptomatic elderly hypertensive patients. Clin Exp Pharmacol Physiol. 1991;18(9):605–10.CrossRefPubMedGoogle Scholar
  8. 8.
    Brott T, Tomsick T, Feinberg W, Johnson C, Biller J, Broderick J, et al. Baseline silent cerebral infarction in the asymptomatic carotid atherosclerosis study. Stroke J Cereb Circ. 1994;25(6):1122–9.CrossRefGoogle Scholar
  9. 9.
    Santamaria Ortiz J, Knight PV. Review: Binswanger’s disease, leukoaraiosis and dementia. Age Ageing. 1994;23(1):75–81.CrossRefPubMedGoogle Scholar
  10. 10.
    Ball MJ. “Leukoaraiosis” explained. Lancet Lond Engl. 1989;1(8638):612–3.CrossRefGoogle Scholar
  11. 11.
    Prins ND, van Dijk EJ, den Heijer T, Vermeer SE, Jolles J, Koudstaal PJ, et al. Cerebral small-vessel disease and decline in information processing speed, executive function and memory. Brain J Neurol. 2005;128(Pt 9):2034–41.CrossRefGoogle Scholar
  12. 12.
    Mok V, Kim JS. Prevention and management of cerebral small vessel disease. J Stroke. 2015;17(2):111–22.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mosley TH, Knopman DS, Catellier DJ, Bryan N, Hutchinson RG, Grothues CA, et al. Cerebral MRI findings and cognitive functioning: the atherosclerosis risk in communities study. Neurology. 2005;64(12):2056–62.CrossRefPubMedGoogle Scholar
  14. 14.
    Vermeer SE, Prins ND, den Heijer T, Hofman A, Koudstaal PJ, Breteler MMB. Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med. 2003;348(13):1215–22.CrossRefPubMedGoogle Scholar
  15. 15.
    Au R, Massaro JM, Wolf PA, Young ME, Beiser A, Seshadri S, et al. Association of White Matter Hyperintensity Volume with Decreased Cognitive Functioning: the Framingham Heart Study. Arch Neurol. 2006;63(2):246–50.CrossRefPubMedGoogle Scholar
  16. 16.
    Rost NS, Rahman R, Sonni S, Kanakis A, Butler C, Massasa E, et al. Determinants of white matter hyperintensity volume in patients with acute ischemic stroke. J Stroke Cerebrovasc Dis Off J Natl Stroke Assoc. 2010;19(3):230–5.CrossRefGoogle Scholar
  17. 17.
    Kuller LH, Longstreth WT, Arnold AM, Bernick C, Bryan RN, Beauchamp NJ. White matter hyperintensity on cranial magnetic resonance imaging: a predictor of stroke. Stroke. 2004;35(8):1821–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Debette S, Beiser A, DeCarli C, Au R, Himali JJ, Kelly-Hayes M, et al. Association of MRI markers of vascular brain injury with incident stroke, mild cognitive impairment, dementia, and mortality: the Framingham Offspring Study. Stroke. 2010;41(4):600–6.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Power MC, Deal JA, Sharrett AR, Jack CR, Knopman D, Mosley TH, et al. Smoking and white matter hyperintensity progression: the ARIC-MRI study. Neurology. 2015;84(8):841–8.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gottesman RF, Coresh J, Catellier DJ, Sharrett AR, Rose KM, Coker LH, et al. Blood pressure and white-matter disease progression in a biethnic cohort: Atherosclerosis Risk in Communities (ARIC) study. Stroke. 2010;41(1):3–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Longstreth WT, Arnold AM, Beauchamp NJ, Manolio TA, Lefkowitz D, Jungreis C, et al. Incidence, manifestations, and predictors of worsening white matter on serial cranial magnetic resonance imaging in the elderly: the Cardiovascular Health Study. Stroke. 2005;36(1):56–61.CrossRefPubMedGoogle Scholar
  22. 22.
    Dufouil C, Chalmers J, Coskun O, Besançon V, Bousser M-G, Guillon P, et al. Effects of blood pressure lowering on cerebral white matter hyperintensities in patients with stroke: the PROGRESS (perindopril protection against recurrent stroke study) magnetic resonance imaging substudy. Circulation. 2005;112(11):1644–50.CrossRefPubMedGoogle Scholar
  23. 23.
    Godin O, Tzourio C, Maillard P, Mazoyer B, Dufouil C. Antihypertensive treatment and change in blood pressure are associated with the progression of white matter lesion volumes: the Three-City (3C)-Dijon magnetic resonance imaging study. Circulation. 2011;123(3):266–73.CrossRefPubMedGoogle Scholar
  24. 24.
    de Havenon A, Majersik JJ, Tirschwell DL, McNally JS, Stoddard G, Rost NS. Blood pressure, glycemic control, and white matter hyperintensity progression in type 2 diabetics. Neurology. 2019;92(11):e1168–75.PubMedGoogle Scholar
  25. 25.
    Derdeyn CP, Chimowitz MI, Lynn MJ, Fiorella D, Turan TN, Janis LS, et al. Aggressive medical treatment with or without stenting in high-risk patients with intracranial artery stenosis (SAMMPRIS): the final results of a randomised trial. Lancet. 2014;383(9914):333–41.CrossRefPubMedGoogle Scholar
  26. 26.
    SPRINT MIND Investigators for the SPRINT Research Group, Williamson JD, Pajewski NM, Auchus AP, Bryan RN, Chelune G, et al. Effect of Intensive vs Standard Blood Pressure Control on Probable Dementia: A Randomized Clinical Trial. JAMA. 2019;321(6):553–61.CrossRefGoogle Scholar
  27. 27.
    SPRINT Research Group, Wright JT, Williamson JD, Whelton PK, Snyder JK, Sink KM, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373(22):2103–16.CrossRefGoogle Scholar
  28. 28.
    Shinkawa A, Ueda K, Kiyohara Y, Kato I, Sueishi K, Tsuneyoshi M, et al. Silent cerebral infarction in a community-based autopsy series in Japan. Hisayama Stud Stroke. 1995;26(3):380–5.CrossRefGoogle Scholar
  29. 29.
    Vermeer SE, Longstreth WT, Koudstaal PJ. Silent brain infarcts: a systematic review. Lancet Neurol. 2007;6(7):611–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Roob G, Schmidt R, Kapeller P, Lechner A, Hartung HP, Fazekas F. MRI evidence of past cerebral microbleeds in a healthy elderly population. Neurology. 1999;52(5):991–4.CrossRefPubMedGoogle Scholar
  31. 31.
    Koennecke H-C. Cerebral microbleeds on MRI: prevalence, associations, and potential clinical implications. Neurology. 2006;66(2):165–71.CrossRefPubMedGoogle Scholar
  32. 32.
    Kato H, Izumiyama M, Izumiyama K, Takahashi A, Itoyama Y. Silent cerebral microbleeds on T2*-weighted MRI: correlation with stroke subtype, stroke recurrence, and leukoaraiosis. Stroke. 2002;33(6):1536–40.CrossRefPubMedGoogle Scholar
  33. 33.
    Hanyu H, Tanaka Y, Shimizu S, Takasaki M, Fujita H, Kaneko N, et al. Cerebral microbleeds in Binswanger’s disease: a gradient-echo T2*-weighted magnetic resonance imaging study. Neurosci Lett. 2003;340(3):213–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Naka H, Nomura E, Wakabayashi S, Kajikawa H, Kohriyama T, Mimori Y, et al. Frequency of asymptomatic microbleeds on T2*-weighted MR images of patients with recurrent stroke: association with combination of stroke subtypes and leukoaraiosis. Am J Neuroradiol. 2004;25(5):714–9.PubMedGoogle Scholar
  35. 35.
    Wright CB, Chuanhui D, Perez Enmanuel J, Janet DR, Mitsuhiro Y, Tatjana R, et al. Subclinical cerebrovascular disease increases the risk of incident stroke and mortality: the Northern Manhattan Study. J Am Heart Assoc. 6(9):e004069.Google Scholar
  36. 36.
    Moroni F, Ammirati E, Magnoni M, D’Ascenzo F, Anselmino M, Anzalone N, et al. Carotid atherosclerosis, silent ischemic brain damage and brain atrophy: a systematic review and meta-analysis. Int J Cardiol. 2016;223:681–7.CrossRefPubMedGoogle Scholar
  37. 37.
    O’Sullivan M, Rich PM, Barrick TR, Clark CA, Markus HS. Frequency of subclinical lacunar infarcts in ischemic leukoaraiosis and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. AJNR Am J Neuroradiol. 2003;24(7):1348–54.PubMedGoogle Scholar
  38. 38.
    Appelman APA, Exalto LG, van der Graaf Y, Biessels GJ, Mali WPTM, Geerlings MI. White matter lesions and brain atrophy: more than shared risk factors? A Systematic Review. Cerebrovasc Dis. 2009;28(3):227–42.CrossRefPubMedGoogle Scholar
  39. 39.
    Shim YS, Yang D-W, Roe CM, Coats MA, Benzinger TL, Xiong C, et al. Pathological correlates of white matter hyperintensities on magnetic resonance imaging. Dement Geriatr Cogn Disord. 2015;39(1–2):92–104.CrossRefPubMedGoogle Scholar
  40. 40.
    Fazekas F, Barkhof F, Wahlund LO, Pantoni L, Erkinjuntti T, Scheltens P, et al. CT and MRI rating of white matter lesions. Cerebrovasc Dis Basel Switz. 2002;13(Suppl 2):31–6.CrossRefGoogle Scholar
  41. 41.
    Fazekas F, Kleinert R, Offenbacher H, Schmidt R, Kleinert G, Payer F, et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology. 1993;43(9):1683–1683.CrossRefGoogle Scholar
  42. 42.
    Schmidt R, Berghold A, Jokinen H, Gouw AA, van der Flier WM, Barkhof F, et al. White matter lesion progression in LADIS: frequency, clinical effects, and sample size calculations. Stroke. 2012;43(10):2643–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Lao Z, Shen D, Liu D, Jawad AF, Melhem ER, Launer LJ, et al. Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine. Acad Radiol. 2008;15(3):300–13.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Goldszal AF, Davatzikos C, Pham DL, Yan MX, Bryan RN, Resnick SM. An image-processing system for qualitative and quantitative volumetric analysis of brain images. J Comput Assist Tomogr. 1998;22(5):827–37.CrossRefPubMedGoogle Scholar
  45. 45.
    Kruit MC, Launer LJ, Ferrari MD, van Buchem MA. Infarcts in the posterior circulation territory in migraine. The population-based MRI CAMERA study. Brain J Neurol. 2005;128(Pt 9):2068–77.CrossRefGoogle Scholar
  46. 46.
    Figiel GS, Krishnan KR, Rao VP, Doraiswamy M, Ellinwood EH, Nemeroff CB, et al. Subcortical hyperintensities on brain magnetic resonance imaging: a comparison of normal and bipolar subjects. J Neuropsychiatr Clin Neurosci. 1991;3(1):18–22.CrossRefGoogle Scholar
  47. 47.
    de Leeuw F-E, de Groot JC, Achten E, Oudkerk M, Ramos L, Heijboer R, et al. Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J Neurol Neurosurg Psychiatry. 2001;70(1):9–14.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    van Swieten JC, Geyskes GG, Derix MMA, Peeck BM, Ramos LMP, van Latum JC, et al. Hypertension in the elderly is associated with white matter lesions and cognitive decline. Ann Neurol. 1991;30(6):825–30.CrossRefPubMedGoogle Scholar
  49. 49.
    de Leeuw F-E, de Groot JC, Oudkerk M, Witteman JCM, Hofman A, van Gijn J, et al. Hypertension and cerebral white matter lesions in a prospective cohort study. Brain. 2002;125(4):765–72.CrossRefPubMedGoogle Scholar
  50. 50.
    Longstreth WT, Manolio TA, Alice A, Burke Gregory L, Nick B, Jungreis Charles A, et al. Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people. Stroke. 1996;27(8):1274–82.CrossRefGoogle Scholar
  51. 51.
    Verhaaren Benjamin FJ, Vernooij MW, De Boer R, Hofman A, Niessen WJ, van der Lugt A, et al. High blood pressure and cerebral white matter lesion progression in the general population. Hypertension. 2013;61(6):1354–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Gottesman RF, Josef C, Catellier Diane J, Richey SA, Rose Kathryn M, Coker Laura H, et al. Blood pressure and white-matter disease progression in a Biethnic cohort. Stroke. 2010;41(1):3–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Nam K-W, Kwon H-M, Jeong H-Y, Park J-H, Kim SH, Jeong S-M, et al. Cerebral white matter hyperintensity is associated with intracranial atherosclerosis in a healthy population. Atherosclerosis. 2017;265:179–83.CrossRefPubMedGoogle Scholar
  54. 54.
    Park J-H, Kwon H-M, Lee J, Kim D-S, Ovbiagele B. Association of intracranial atherosclerotic stenosis with severity of white matter hyperintensities. Eur J Neurol. 2015;22(1):44–52 e2-3.CrossRefPubMedGoogle Scholar
  55. 55.
    Au R, Massaro JM, Wolf PA, Young ME, Beiser A, Seshadri S, et al. Association of white matter hyperintensity volume with decreased cognitive functioning: the Framingham Heart Study. Arch Neurol. 2006;63(2):246–50.CrossRefPubMedGoogle Scholar
  56. 56.
    Lee JJ, Lee EY, Lee SB, Park JH, Kim TH, Jeong H-G, et al. Impact of white matter lesions on depression in the patients with Alzheimer’s disease. Psychiatry Investig. 2015;12(4):516–22.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Rabins PV, Pearlson GD, Aylward E, Kumar AJ, Dowell K. Cortical magnetic resonance imaging changes in elderly inpatients with major depression. Am J Psychiatry. 1991;148(5):617–20.CrossRefPubMedGoogle Scholar
  58. 58.
    O’Brien JT, Firbank MJ, Krishnan MS, van Straaten ECW, van der Flier WM, Petrovic K, et al. White matter hyperintensities rather than lacunar infarcts are associated with depressive symptoms in older people: the LADIS study. Am J Geriatr Psychiatry. 2006;14(10):834–41.CrossRefPubMedGoogle Scholar
  59. 59.
    Thomas AJ, O’Brien JT, Davis S, Ballard C, Barber R, Kalaria RN, et al. Ischemic basis for deep white matter hyperintensities in major depression: a neuropathological study. Arch Gen Psychiatry. 2002;59(9):785–92.CrossRefPubMedGoogle Scholar
  60. 60.
    Kolominsky-Rabas PL, Weber M, Gefeller O, Neundoerfer B, Heuschmann PU. Epidemiology of ischemic stroke subtypes according to TOAST criteria incidence, recurrence, and long-term survival in ischemic stroke subtypes: a population-based study. Stroke. 2001;32(12):2735–40.CrossRefPubMedGoogle Scholar
  61. 61.
    Vermeer SE, Koudstaal PJ, Oudkerk M, Hofman A, Breteler MMB. Prevalence and risk factors of silent brain infarcts in the population-based Rotterdam Scan Study. Stroke. 2002;33(1):21–5.CrossRefPubMedGoogle Scholar
  62. 62.
    Aono Y, Ohkubo T, Kikuya M, Hara A, Kondo T, Obara T, et al. Plasma fibrinogen, ambulatory blood pressure, and silent cerebrovascular lesions: the Ohasama study. Arterioscler Thromb Vasc Biol. 2007;27(4):963–8.CrossRefPubMedGoogle Scholar
  63. 63.
    Fanning JP, Wong AA, Fraser JF. The epidemiology of silent brain infarction: a systematic review of population-based cohorts. BMC Med. 2014;12:119.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Wall HK, Hannan JA, Wright JS. Patients with undiagnosed hypertension. JAMA. 2014;312(19):1973–4.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Boiten J, Lodder J, Kessels F. Two clinically distinct lacunar infarct entities? A hypothesis. Stroke. 1993;24(5):652–6.CrossRefPubMedGoogle Scholar
  66. 66.
    de Jong G, Kessels F, Lodder J. Two types of lacunar infarcts. Stroke. 2002;33(8):2072–6.CrossRefPubMedGoogle Scholar
  67. 67.
    DeBaun MR, Sarnaik SA, Rodeghier MJ, Minniti CP, Howard TH, Iyer RV, et al. Associated risk factors for silent cerebral infarcts in sickle cell anemia: low baseline hemoglobin, sex, and relative high systolic blood pressure. Blood. 2012;119(16):3684–90.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    O’Sullivan M, Rich PM, Barrick TR, Clark CA, Markus HS. Frequency of subclinical lacunar infarcts in ischemic leukoaraiosis and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Am J Neuroradiol. 2003;24(7):1348–54.PubMedGoogle Scholar
  69. 69.
    Kempster PA, Gerraty RP, Gates PC. Asymptomatic cerebral infarction in patients with chronic atrial fibrillation. Stroke. 1988;19(8):955–7.CrossRefPubMedGoogle Scholar
  70. 70.
    Hahne K, Mönnig G, Samol A. Atrial fibrillation and silent stroke: links, risks, and challenges. Vasc Health Risk Manag. 2016;12:65–74.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Takahashi W, Fujii H, Ide M, Takagi S, Shinohara Y. Atherosclerotic changes in intracranial and extracranial large arteries in apparently healthy persons with asymptomatic lacunar infarction. J Stroke Cerebrovasc Dis. 2005;14(1):17–22.CrossRefPubMedGoogle Scholar
  72. 72.
    Tejada J, Díez-Tejedor E, Hernández-Echebarría L, Balboa O. Does a relationship exist between carotid stenosis and lacunar infarction? Stroke. 2003;34(6):1404–9.CrossRefPubMedGoogle Scholar
  73. 73.
    Hediyeh B, Gino G, Edward M, Gulce A, Hooman K, Ajay G. Silent brain infarction in patients with asymptomatic carotid artery atherosclerotic disease. Stroke. 2016;47(5):1368–70.CrossRefGoogle Scholar
  74. 74.
    Igase M, Tabara Y, Igase K, Nagai T, Ochi N, Kido T, et al. Asymptomatic cerebral microbleeds seen in healthy subjects have a strong association with asymptomatic lacunar infarction. Circ J. 2009;16:0901140237–7.Google Scholar
  75. 75.
    Gregoire SM, Brown MM, Kallis C, Jäger HR, Yousry TA, Werring DJ. MRI detection of new microbleeds in patients with ischemic stroke: five-year cohort follow-up study. Stroke. 2010;41(1):184–6.CrossRefPubMedGoogle Scholar
  76. 76.
    Greenberg SM, Charidimou A. Diagnosis of cerebral amyloid angiopathy: evolution of the Boston criteria. Stroke. 2018;49(2):491–7.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Poels Mariëlle MF, Vernooij MW, Arfan IM, Albert H, Krestin Gabriel P, van der Lugt A, et al. Prevalence and risk factors of cerebral microbleeds. Stroke. 2010;41(10_suppl_1):S103–6.CrossRefPubMedGoogle Scholar
  78. 78.
    Charidimou A, Gang Q, Werring DJ. Sporadic cerebral amyloid angiopathy revisited: recent insights into pathophysiology and clinical spectrum. J Neurol Neurosurg Psychiatry. 2012;83(2):124–37.CrossRefPubMedGoogle Scholar
  79. 79.
    Tsivgoulis G, Zand R, Katsanos AH, Turc G, Nolte CH, Jung S, et al. Risk of symptomatic intracerebral hemorrhage after intravenous thrombolysis in patients with acute ischemic stroke and high cerebral microbleed burden: a meta-analysis. JAMA Neurol. 2016;73(6):675–83.CrossRefPubMedGoogle Scholar
  80. 80.
    Shoamanesh A, Kwok CS, Lim PA, Benavente OR. Postthrombolysis intracranial hemorrhage risk of cerebral microbleeds in acute stroke patients: a systematic review and meta-analysis. Int J Stroke Off J Int Stroke Soc. 2013;8(5):348–56.CrossRefGoogle Scholar
  81. 81.
    Charidimou A, Shoamanesh A, Wilson D, Gang Q, Fox Z, Jäger HR, et al. Cerebral microbleeds and postthrombolysis intracerebral hemorrhage risk. Neurology. 2015;85(11):927–34.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2018;49(3):e46–110.CrossRefGoogle Scholar
  83. 83.
    Kohara K, Jiang Y, Igase M, Takata Y, Fukuoka T, Okura T, et al. Postprandial hypotension is associated with asymptomatic cerebrovascular damage in essential hypertensive patients. Hypertens Dallas Tex 1979. 1999;33(1 Pt 2):565–8.Google Scholar
  84. 84.
    SPRINT MIND Trial Finds Lower Risk of MCI and Dementia With Lower BP [Internet]. American College of Cardiology. [cited 2018 Aug 16]. Available from: http%3a%2f%2fwww.acc.org%2flatest-in-cardiology%2farticles%2f2018%2f07%2f26%2f16%2f36%2fsprint-mind-trial-finds-lower-risk-of-mci-and-dementia-with-lower-bp. Accessed 22 June 2019.
  85. 85.
    Mok VCT, Lam WWM, Fan YH, Wong A, Ng PW, Tsoi TH, et al. Effects of statins on the progression of cerebral white matter lesion: post hoc analysis of the ROCAS (regression of cerebral artery stenosis) study. J Neurol. 2009;256(5):750–7.CrossRefPubMedGoogle Scholar
  86. 86.
    Ngandu T, Lehtisalo J, Solomon A, Levälahti E, Ahtiluoto S, Antikainen R, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet. 2015;385(9984):2255–63.CrossRefPubMedGoogle Scholar
  87. 87.
    Romero JR, Preis SR, Beiser A, DeCarli C, Viswanathan A, Martinez-Ramirez S, et al. Risk factors, stroke prevention treatments, and prevalence of cerebral microbleeds in the Framingham Heart Study. Stroke. 2014;45(5):1492–4.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Lei C, Wu B, Liu M, Chen Y. Association between statin use and intracerebral hemorrhage: a systematic review and meta-analysis. Eur J Neurol. 2014;21(2):192–8.CrossRefPubMedGoogle Scholar
  89. 89.
    Williamson JD, Launer LJ, Bryan RN, Coker LH, Lazar RM, Gerstein HC, et al. Cognitive function and brain structure in persons with type 2 diabetes mellitus after intensive lowering of blood pressure and lipid levels: a randomized clinical trial. JAMA Intern Med. 2014;174(3):324–33.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    McNeil JJ, Nelson MR, Woods RL, Lockery JE, Wolfe R, Reid CM, et al. Effect of aspirin on all-cause mortality in the healthy elderly. N Engl J Med. 2018;379(16):1519–28.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Isaac T, Rosenthal MB, Colla CH, Morden NE, Mainor AJ, Li Z, et al. Measuring overuse with electronic health records data. Am J Manag Care. 2018;24(1):19–25.PubMedGoogle Scholar
  92. 92.
    Klang E, Beytelman A, Greenberg D, Or J, Guranda L, Konen E, et al. Overuse of head CT Examinations for the Investigation of minor head trauma: analysis of contributing factors. J Am Coll Radiol. 2017;14(2):171–6.CrossRefPubMedGoogle Scholar
  93. 93.
    Melnick ER, Szlezak CM, Bentley SK, Dziura JD, Kotlyar S, Post LA. CT overuse for mild traumatic brain injury. Jt Comm J Qual Patient Saf. 2012;38(11):483–9.CrossRefPubMedGoogle Scholar
  94. 94.
    Bermingham SL. The appropriate use of neuroimaging in the diagnostic work-up of dementia: an economic literature review and cost-effectiveness analysis. Ont Health Technol Assess Ser. 2014;14(2):1–67.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Adam de Havenon
    • 1
    Email author
  • Chelsea Meyer
    • 1
  • J. Scott McNally
    • 2
  • Matthew Alexander
    • 2
  • Lee Chung
    • 1
  1. 1.Department of NeurologyUniversity of UtahSalt Lake CityUSA
  2. 2.Department of RadiologyUniversity of UtahSalt Lake CityUSA

Personalised recommendations