Cardiometabolic Effects of Anti-obesity Pharmacotherapy

  • Andrew R. Crawford
  • Naji Alamuddin
  • Anastassia Amaro
Nonstatin Drugs (E. deGoma, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Nonstatin Drugs

Abstract

Purpose of Review

We review recent studies discussing the impact of pharmacologic agents for weight loss on clinical cardiovascular events, as well as cardiometabolic risk factors.

Recent Findings

Pharmacotherapy with current FDA-approved medications for weight loss can significantly improve known risk factors for the development of cardiovascular disease such as hypertension, hyperlipidemia, insulin resistance, inflammatory biomarkers, and the quantity of visceral fat, as well as non-alcoholic fatty liver disease. However, data regarding the actual reduction in clinical cardiovascular events with the use of weight loss medications is scarce.

Summary

Pharmacotherapy for weight loss may have additional benefit in optimizing patient’s cardiometabolic comorbidities and improving their clinical cardiovascular outcomes, but each drug should be carefully selected based upon individual patient characteristics.

Keywords

Obesity Metabolic syndrome Weight loss medications Heart disease 

Notes

Acknowledgements

The authors thank Megin Myers, CRNP, for her critical review of the manuscript.

Compliance with Ethical Standards

Conflict of Interest

NA has consulted for Novo Nordisk. AA has consulted for Novo Nordisk and is a consultant for Andrew Technologies. ARC declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999-2008. JAMA. 2010;303(3):235–41.CrossRefPubMedGoogle Scholar
  2. 2.
    Pollack AA. AMA recognizes obesity as a disease. New York Times. Archived from the original on June. 2013;18.Google Scholar
  3. 3.
    Centers for Disease Control and Prevention: Cancers associated with overweight and obesity make up 40 percent of cancers diagnosed in the United States [Press release]. Retrieved from: https://www.cdc.gov/media/releases/2017/p1003-vs-cancer-obesity.html. (2017).
  4. 4.
    •• Heymsfield SB, Wadden TA. Mechanisms, pathophysiology, and management of obesity. N Engl J Med. 2017;376(3):254–66. Excellent recent review article on mechanisms, adverse effects and multimodal management of obesity. CrossRefPubMedGoogle Scholar
  5. 5.
    •• Apovian CM, Aronne LJ, Bessesen DH, McDonnell ME, Murad MH, Pagotto U, et al. Pharmacological management of obesity: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2015;100(2):342–62. Endocrine Society Guidelines for pharmacotherapy in obesity. CrossRefPubMedGoogle Scholar
  6. 6.
    Hampp C, Kang EM, Borders-Hemphill V. Use of prescription antiobesity drugs in the United States. Pharmacother J Hum Pharmacol Drug Ther. 2013 Dec 1;33(12):1299–307.CrossRefGoogle Scholar
  7. 7.
    Centers for Disease Control and Prevention. National diabetes statistics report: estimates of diabetes and its burden in the United States, 2014. Atlanta: US Department of Health and Human Services; 2014.Google Scholar
  8. 8.
    Samaranayake NR, Ong KL, Leung RY, Cheung BM. Management of obesity in the National Health and Nutrition Examination Survey (NHANES), 2007–2008. Ann Epidemiol. 2012;22(5):349–53.CrossRefPubMedGoogle Scholar
  9. 9.
    Thomas CE, Mauer EA, Shukla AP, Rathi S, Aronne LJ. Low adoption of weight loss medications: a comparison of prescribing patterns of antiobesity pharmacotherapies and SGLT2s. Obesity. 2016;24(9):1955–61.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ikeda N, Sapienza D, Guerrero R, Aekplakorn W, Naghavi M, Mokdad AH, et al. Control of hypertension with medication: a comparative analysis of national surveys in 20 countries. Bull World Health Organ. 2014;92(1):10–9C.CrossRefPubMedGoogle Scholar
  11. 11.
    Colquitt JL, Pickett K, Loveman E, Frampton GK. Surgery for weight loss in adults. Cochrane Database Syst Rev. 2014;(8):CD003641.Google Scholar
  12. 12.
    Adams TD, Gress RE, Smith SC, Halverson RC, Simper SC, Rosamond WD, et al. Long-term mortality after gastric bypass surgery. N Engl J Med. 2007;357(8):753–61.CrossRefPubMedGoogle Scholar
  13. 13.
    Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Brethauer SA, Navaneethan SD, et al. Bariatric surgery versus intensive medical therapy for diabetes—3-year outcomes. N Engl J Med. 2014;370(21):2002–13.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Look AHEAD Research Group. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med. 2013;2013(369):145–54.CrossRefGoogle Scholar
  15. 15.
    •• Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med. 2015;373(1):11–22. Landmark trial that demonstrated significant benefit weight loss with liraglutide. CrossRefPubMedGoogle Scholar
  16. 16.
    •• Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;2016(375):311–22. Landmark trial demonstrating significant reduction in major cardiovascular outcomes in patients with type 2 diabetes treated with liraglutide. CrossRefGoogle Scholar
  17. 17.
    Marso SP, Poulter NR, Nissen SE, Nauck MA, Zinman B, Daniels GH, et al. Design of the liraglutide effect and action in diabetes: evaluation of cardiovascular outcome results (LEADER) trial. Am Heart J. 2013;166(5):823–30.CrossRefPubMedGoogle Scholar
  18. 18.
    Garvey WT, Ryan DH, Look M, Gadde KM, Allison DB, Peterson CA, et al. Two-year sustained weight loss and metabolic benefits with controlled-release phentermine/topiramate in obese and overweight adults (SEQUEL): a randomized, placebo-controlled, phase 3 extension study. Am J Clin Nutr. 2012;95(2):297–308.CrossRefPubMedGoogle Scholar
  19. 19.
    Fidler MC, Sanchez M, Raether B, Weissman NJ, Smith SR, Shanahan WR, et al. A one-year randomized trial of lorcaserin for weight loss in obese and overweight adults: the BLOSSOM trial. J Clin Endocrinol Metab. 2011;96(10):3067–77.CrossRefPubMedGoogle Scholar
  20. 20.
    O’Neil PM, Smith SR, Weissman NJ, Fidler MC, Sanchez M, Zhang J, et al. Randomized placebo-controlled clinical trial of lorcaserin for weight loss in type 2 diabetes mellitus: the BLOOM-DM study. Obesity. 2012;20(7):1426–36.CrossRefPubMedGoogle Scholar
  21. 21.
    Smith SR, Weissman NJ, Anderson CM, Sanchez M, Chuang E, Stubbe S, et al. Behavioral modification and lorcaserin for overweight and obesity management (BLOOM) study group. Multicenter, placebo-controlled trial of lorcaserin for weight management. N Engl J Med. 2010;363(3):245–56.CrossRefPubMedGoogle Scholar
  22. 22.
    Hollander P, Gupta AK, Plodkowski R, Greenway F, Bays H, Burns C, et al. Effects of naltrexone sustained-release/bupropion sustained-release combination therapy on body weight and glycemic parameters in overweight and obese patients with type 2 diabetes. Diabetes Care. 2013;36(12):4022–9.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Apovian CM, Aronne L, Rubino D, Still C, Wyatt H, Burns C, et al. A randomized, phase 3 trial of naltrexone SR/bupropion SR on weight and obesity-related risk factors (COR-II). Obesity. 2013;21(5):935–43.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Davidson MH, Hauptman J, DiGirolamo M, Foreyt JP, Halsted CH, Heber D, et al. Weight control and risk factor reduction in obese subjects treated for 2 years with orlistat: a randomized controlled trial. JAMA. 1999;281(3):235–42.CrossRefPubMedGoogle Scholar
  25. 25.
    • Sahebkar A, Simental-Mendía LE, Reiner Ž, Kovanen PT, Simental-Mendía M, Bianconi V, Pirro M. Effect of orlistat on plasma lipids and body weight: a systematic review and meta-analysis of 33 randomized controlled trials. Pharmacol Res. 2017. Recent meta-analysis demonstrating optimization of lipid profiles with use of orlistat. Google Scholar
  26. 26.
    Derosa G, Maffioli P, Sahebkar A. Improvement of plasma adiponectin, leptin and C-reactive protein concentrations by orlistat: a systematic review and meta-analysis. Br J Clin Pharmacol. 2016;81(5):819–34.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zelber–Sagi S, Kessler A, Brazowsky E, Webb M, Lurie Y, Santo M, et al. A double-blind randomized placebo-controlled trial of orlistat for the treatment of nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2006;4(5):639–44.CrossRefPubMedGoogle Scholar
  28. 28.
    Khan RA, Kapur P, Jain A, Farah F, Bhandari U. Effect of orlistat on periostin, adiponectin, inflammatory markers and ultrasound grades of fatty liver in obese NAFLD patients. Ther Clin Risk Manag. 2017;13:139–49.CrossRefGoogle Scholar
  29. 29.
    Harrison SA, Fecht W, Brunt EM, Neuschwander-Tetri BA. Orlistat for overweight subjects with nonalcoholic steatohepatitis: a randomized, prospective trial. Hepatology. 2009;49(1):80–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Torgerson JS, Hauptman J, Boldrin MN, Sjöström L. Xenical in the prevention of diabetes in obese subjects (XENDOS) study. Diabetes Care. 2004;27(1):155–61.CrossRefPubMedGoogle Scholar
  31. 31.
    Shi YF, Pan CY, Hill J, Gao Y. Orlistat in the treatment of overweight or obese Chinese patients with newly diagnosed type 2 diabetes. Diabet Med. 2005;22(12):1737–43.CrossRefPubMedGoogle Scholar
  32. 32.
    Alberti KG, International Diabetes Federation Task Force on Epidemiology and Prevention; Hational Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; International Association for the Study of Obesity. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation. Circulation. 2009;120(16):1640–5.CrossRefPubMedGoogle Scholar
  33. 33.
    Park YW, Zhu S, Palaniappan L, Heshka S, Carnethon MR, Heymsfield SB. The metabolic syndrome: prevalence and associated risk factor findings in the US population from the Third National Health and Nutrition Examination Survey, 1988-1994. Arch Intern Med. 2003;163(4):427–36.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Mottillo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P, et al. The metabolic syndrome and cardiovascular risk: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;56(14):1113–32.CrossRefPubMedGoogle Scholar
  35. 35.
    • Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res. 2015;116(6):991. Recent review on the mechanisms of obesity-related hypertension. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Katsurada K, Yada T. Neural effects of gut-and brain-derived glucagon-like peptide-1 and its receptor agonist. J Diabetes Investig. 2016;7(S1):64–9.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Saraiva FK, Sposito AC. Cardiovascular effects of glucagon-like peptide 1 (GLP-1) receptor agonists. Cardiovasc Diabetol. 2014;13(1):142.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Gadde KM, Allison DB, Ryan DH, Peterson CA, Troupin B, Schwiers ML, et al. Effects of low-dose, controlled-release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): a randomised, placebo-controlled, phase 3 trial. Lancet. 2011;377(9774):1341–52.CrossRefPubMedGoogle Scholar
  39. 39.
    Sharma AM, Golay A. Effect of orlistat-induced weight loss on blood pressure and heart rate in obese patients with hypertension. J Hypertens. 2002;20(9):1873–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Quehenberger O, Dennis EA. The human plasma lipidome. N Engl J Med. 2011;365(19):1812–23.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Bays HE, Toth PP, Kris-Etherton PM, Abate N, Aronne LJ, Brown WV, et al. Obesity, adiposity, and dyslipidemia: a consensus statement from the National Lipid Association. J Clin Lipidol. 2013;7(4):304–83.CrossRefPubMedGoogle Scholar
  42. 42.
    • Grant RW, Dixit VD. Adipose tissue as an immunological organ. Obesity. 2015;23(3):512–8. Review article on the immune role of adipose tissue and systemic inflammation. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Jellinger PS, Handelsman Y, Rosenblit PD, Bloomgarden ZT, Fonseca VA, Garber AJ, et al. American Association of Clinical Endocrinologists and American College of Endocrinology Guidelines for management of dyslipidemia and prevention of cardiovascular disease. Endocr Pract. 2017;23(s2):1–87.CrossRefPubMedGoogle Scholar
  44. 44.
    Belalcazar LM, Reboussin DM, Haffner SM, Hoogeveen RC, Kriska AM, Schwenke DC, et al. A 1-year lifestyle intervention for weight loss in individuals with type 2 diabetes reduces high C-reactive protein levels and identifies metabolic predictors of change. Diabetes Care. 2010;33(11):2297–303.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Canoy D, Boekholdt SM, Wareham N, Luben R, Welch A, Bingham S, et al. Body fat distribution and risk of coronary heart disease in men and women in the European prospective investigation into cancer and nutrition in Norfolk cohort. Circulation. 2007;116(25):2933–43.CrossRefPubMedGoogle Scholar
  46. 46.
    Yusuf S, Hawken S, Ôunpuu S, Bautista L, Franzosi MG, Commerford P, et al. Obesity and the risk of myocardial infarction in 27000 participants from 52 countries: a case-control study. Lancet. 2005;366(9497):1640–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Tchkonia T, Thomou T, Zhu Y, Karagiannides I, Pothoulakis C, Jensen MD, et al. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab. 2013;17(5):644–56.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Pouliot MC, Després JP, Lemieux S, Moorjani S, Bouchard C, Tremblay A, et al. Waist circumference and abdominal sagittal diameter: best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am J Cardiol. 1994;73(7):460–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Santilli F, Simeone PG, Guagnano MT, Leo M, Maccarone MT, Di Castelnuovo A, et al. Effects of liraglutide on weight loss, fat distribution, and β-cell function in obese subjects with prediabetes or early type 2 diabetes. Diabetes Care. 2017;40(11):1556–64.CrossRefPubMedGoogle Scholar
  50. 50.
    Charlton MR, Burns JM, Pedersen RA, Watt KD, Heimbach JK, Dierkhising RA. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology. 2011;141(4):1249–53.CrossRefPubMedGoogle Scholar
  51. 51.
    Katsagoni CN, Georgoulis M, Papatheodoridis GV, Panagiotakos DB, Kontogianni MD. Effects of lifestyle interventions on clinical characteristics of patients with non-alcoholic fatty liver disease: a meta-analysis. Metabolism. 2017;68:119–32.CrossRefPubMedGoogle Scholar
  52. 52.
    •• Armstrong MJ, Gaunt P, Aithal GP, Barton D, Hull D, Parker R, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet. 2016;387(10019):679–90. Trial that demonstrated benefit of liraglutide in reversing NAFLD. CrossRefPubMedGoogle Scholar
  53. 53.
    Carey DG, Jenkins AB, Campbell LV, Freund J, Chisholm DJ. Abdominal fat and insulin resistance in normal and overweight women: direct measurements reveal a strong relationship in subjects at both low and high risk of NIDDM. Diabetes. 1996;45(5):633–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pract. 2014;11:2014.Google Scholar
  55. 55.
    Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;2002(346):393–403.Google Scholar
  56. 56.
    Gerstein HC. Do lifestyle changes reduce serious outcomes in diabetes? N Engl J Med. 2013;369(2):189.CrossRefPubMedGoogle Scholar
  57. 57.
    James WP, Caterson ID, Coutinho W, Finer N, Van Gaal LF, Maggioni AP, et al. Effect of sibutramine on cardiovascular outcomes in overweight and obese subjects. N Engl J Med. 2010;363(10):905–17.CrossRefPubMedGoogle Scholar
  58. 58.
    Connolly HM, Crary JL, McGoon MD, Hensrud DD, Edwards BS, Edwards WD, et al. Valvular heart disease associated with fenfluramine–phentermine. N Engl J Med. 1997;337(9):581–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Nissen SE, Wolski KE, Prcela L, Wadden T, Buse JB, Bakris G, et al. Effect of naltrexone-bupropion on major adverse cardiovascular events in overweight and obese patients with cardiovascular risk factors: a randomized clinical trial. JAMA. 2016;315(10):990–1004.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Andrew R. Crawford
    • 1
  • Naji Alamuddin
    • 1
  • Anastassia Amaro
    • 1
  1. 1.Division of Endocrinology, Diabetes and Metabolism, Perelman School of Medicine, and Penn Metabolic MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations