Bitter Taste Receptors: an Answer to Comprehensive Asthma Control?

  • Ajay P. Nayak
  • Dominic Villalba
  • Deepak A. DeshpandeEmail author
Basic and Applied Science (I Lewkowich, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Basic and Applied Science


Purpose of Review

Asthma is marked by peculiar pathological features involving airway contraction, an impinging inflammation in the lungs, and an inexorably progressive remodeling of pulmonary architecture. Current medications for management of asthma exacerbations fail to optimally mitigate these pathologies, which is partly due to the intrinsic heterogeneity in the development and progression of asthma within different populations. In recent years, the discovery of the ectopic expression of TAS2Rs in extraoral tissues and different cell types, combined with significant strides in gaining mechanistic understanding into receptor signaling and function, has revealed the potential to target TAS2Rs for asthma relief.

Recent Findings

TAS2R activation leads to relaxation of airway smooth muscle cells and bronchodilation. In addition, findings from preclinical studies in murine model of asthma suggest that TAS2R agonists inhibit allergen-induced airway inflammation, remodeling, and hyperresponsiveness.


In this review, we expand on the opportunity presented by TAS2Rs in the development of a comprehensive asthma treatment that overcomes the limitations set forth by current asthma therapeutics.


Asthma TAS2R Bitter tastant Airway smooth muscle SCC 


Funding Information

This study was supported by grants from American Asthma Foundation, and National Heart, Lung, Blood Institute Grant R01HL137030.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Workman AD, Palmer JN, Adappa ND, Cohen NA. The role of bitter and sweet taste receptors in upper airway immunity. Curr Allergy Asthma Rep. 2015;15(12):72.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lee RJ, Cohen NA. Taste receptors in innate immunity. Cell Mol Life Sci. 2015;72(2):217–36.CrossRefPubMedGoogle Scholar
  3. 3.
    Finger TE, Danilova V, Barrows J, Bartel DL, Vigers AJ, Stone L, et al. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science. 2005;310(5753):1495–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Sternini C, Anselmi L, Rozengurt E. Enteroendocrine cells: a site of ‘taste’ in gastrointestinal chemosensing. Curr Opin Endocrinol Diabetes Obes. 2008;15(1):73–8.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sternini C. Taste receptors in the gastrointestinal tract. IV. Functional implications of bitter taste receptors in gastrointestinal chemosensing. Am J Physiol Gastrointest Liver Physiol. 2007;292(2):G457–61.CrossRefPubMedGoogle Scholar
  6. 6.
    Rozengurt E. Taste receptors in the gastrointestinal tract. I. Bitter taste receptors and alpha-gustducin in the mammalian gut. Am J Physiol Gastrointest Liver Physiol. 2006;291(2):G171–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Wu S, Rozengurt N, Yang M, Young SH, Sinnett-Smith J, Rozengurt E. Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells. Proc Natl Acad Sci U S A. 2012;99(4):2392–7.CrossRefGoogle Scholar
  8. 8.
    •• Luo XC, Chen ZH, Xue JB, Zhao DX, Lu C, Li YH, et al. Infection by the parasitic helminth Trichinella spiralis activates a Tas2r-mediated signaling pathway in intestinal tuft cells. Proc Natl Acad Sci U S A. 2019;116(12):5564–9. Study demostrated the role of TAS2Rs in orchestrating parasite-induced Th2 immune response. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Braman SS. The global burden of asthma. Chest. 2006;130(1 Suppl):4S–12S.CrossRefPubMedGoogle Scholar
  10. 10.
    Skloot GS. Asthma phenotypes and endotypes: a personalized approach to treatment. Curr Opin Pulm Med. 2016;22(1):3–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med. 2012;18(5):716–25.CrossRefPubMedGoogle Scholar
  12. 12.
    Wenzel SE. Asthma: defining of the persistent adult phenotypes. Lancet. 2006;368(9537):804–13.CrossRefPubMedGoogle Scholar
  13. 13.
    Drazen JM, Silverman EK, Lee TH. Heterogeneity of therapeutic responses in asthma. Br Med Bull. 2000;56(4):1054–70.CrossRefPubMedGoogle Scholar
  14. 14.
    Demoly P, Paggiaro P, Plaza V, Bolge SC, Kannan H, Sohier B, et al. Prevalence of asthma control among adults in France, Germany, Italy, Spain and the UK. Eur Respir Rev. 2009;18(112):105–12.CrossRefPubMedGoogle Scholar
  15. 15.
    Chapman KR, Boulet LP, Rea RM, Franssen E. Suboptimal asthma control: prevalence, detection and consequences in general practice. Eur Respir J. 2008;31(2):320–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Salpeter SR, Wall AJ, Buckley NS. Long-acting beta-agonists with and without inhaled corticosteroids and catastrophic asthma events. Am J Med. 2010;123(4):322–8 e2.CrossRefPubMedGoogle Scholar
  17. 17.
    •• Deshpande DA, Wang WC, McIlmoyle EL, Robinett KS, Schillinger RM, An SS, et al. Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat Med. 2010;16(11):1299–304. Study for the first time demostrated the expression and functional effect of TAS2Rs on human ASM cells. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Pan S, Sharma P, Shah SD, Deshpande DA. Bitter taste receptor agonists alter mitochondrial function and induce autophagy in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2017;313(1):L154–L65.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sharma P, Panebra A, Pera T, Tiegs BC, Hershfeld A, Kenyon LC, et al. Antimitogenic effect of bitter taste receptor agonists on airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2016;310(4):L365–76.CrossRefPubMedGoogle Scholar
  20. 20.
    •• Sharma P, Yi R, Nayak AP, Wang N, Tang F, Knight MJ, et al. Bitter taste receptor agonists mitigate features of allergic asthma in mice. Sci Rep. 2017;7:46166. This study demonstrated the in vivo effectiveness of TAS2R agonists on features of asthma in multiple murine models. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kuperman DA, Huang X, Koth LL, Chang GH, Dolganov GM, Zhu Z, et al. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat Med. 2002;8(8):885–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Risse PA, Jo T, Suarez F, Hirota N, Tolloczko B, Ferraro P, et al. Interleukin-13 inhibits proliferation and enhances contractility of human airway smooth muscle cells without change in contractile phenotype. Am J Physiol Lung Cell Mol Physiol. 2011;300(6):L958–66.CrossRefPubMedGoogle Scholar
  23. 23.
    Chiba Y, Nakazawa S, Todoroki M, Shinozaki K, Sakai H, Misawa M. Interleukin-13 augments bronchial smooth muscle contractility with an up-regulation of RhoA protein. Am J Respir Cell Mol Biol. 2009;40(2):159–67.CrossRefPubMedGoogle Scholar
  24. 24.
    White TA, Xue A, Chini EN, Thompson M, Sieck GC, Wylam ME. Role of transient receptor potential C3 in TNF-alpha-enhanced calcium influx in human airway myocytes. Am J Respir Cell Mol Biol. 2006;35(2):243–51.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kuyper LM, Pare PD, Hogg JC, Lambert RK, Ionescu D, Woods R, et al. Characterization of airway plugging in fatal asthma. Am J Med. 2003;115(1):6–11.CrossRefPubMedGoogle Scholar
  26. 26.
    Ordonez CL, Khashayar R, Wong HH, Ferrando R, Wu R, Hyde DM, et al. Mild and moderate asthma is associated with airway goblet cell hyperplasia and abnormalities in mucin gene expression. Am J Respir Crit Care Med. 2001;163(2):517–23.CrossRefPubMedGoogle Scholar
  27. 27.
    Damera G, Tliba O, Panettieri RA Jr. Airway smooth muscle as an immunomodulatory cell. Pulm Pharmacol Ther. 2009;22(5):353–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Panettieri RA Jr. Airway smooth muscle: an immunomodulatory cell. J Allergy Clin Immunol. 2002;110(6 Suppl):S269–74.CrossRefPubMedGoogle Scholar
  29. 29.
    Brightling CE, Bradding P, Symon FA, Holgate ST, Wardlaw AJ, Pavord ID. Mast-cell infiltration of airway smooth muscle in asthma. N Engl J Med. 2002;346(22):1699–705.CrossRefPubMedGoogle Scholar
  30. 30.
    Lauzon AM, and Martin JG. Airway hyperresponsiveness; smooth muscle as the principal actor. F1000Res. 2016;5.CrossRefGoogle Scholar
  31. 31.
    Prakash YS. Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease. Am J Physiol Lung Cell Mol Physiol. 2016;311(6):L1113–L40.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Prakash YS. Airway smooth muscle in airway reactivity and remodeling: what have we learned? Am J Physiol Lung Cell Mol Physiol. 2013;305(12):L912–33.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Billington CK, Penn RB. Signaling and regulation of G protein-coupled receptors in airway smooth muscle. Respir Res. 2003;4:2.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Deshpande DA, Penn RB. Targeting G protein-coupled receptor signaling in asthma. Cell Signal. 2006;18(12):2105–20.CrossRefPubMedGoogle Scholar
  35. 35.
    Pera T, Penn RB. Bronchoprotection and bronchorelaxation in asthma: new targets, and new ways to target the old ones. Pharmacol Ther. 2016;164:82–96.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Chaudhari N, Roper SD. The cell biology of taste. J Cell Biol. 2010;190(3):285–96.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Roper SD, Chaudhari N. Taste buds: cells, signals and synapses. Nat Rev Neurosci. 2017;18(8):485–97.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zhang CH, Chen C, Lifshitz LM, Fogarty KE, Zhu MS, ZhuGe R. Activation of BK channels may not be required for bitter tastant-induced bronchodilation. Nat Med. 2012;18(5):648–50 author reply 50-1.CrossRefPubMedGoogle Scholar
  39. 39.
    Belvisi MG, Dale N, Birrell MA, Canning BJ. Bronchodilator activity of bitter tastants in human tissue. Nat Med. 2011;17(7):776.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Pulkkinen V, Manson ML, Safholm J, Adner M, Dahlen SE. The bitter taste receptor (TAS2R) agonists denatonium and chloroquine display distinct patterns of relaxation of the guinea pig trachea. Am J Physiol Lung Cell Mol Physiol. 2012;303(11):L956–66.CrossRefPubMedGoogle Scholar
  41. 41.
    Robinett KS, Koziol-White CJ, Akoluk A, An SS, Panettieri RA Jr, Liggett SB. Bitter taste receptor function in asthmatic and nonasthmatic human airway smooth muscle cells. Am J Respir Cell Mol Biol. 2014;50(4):678–83.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Shi P, Zhang J, Yang H, Zhang YP. Adaptive diversification of bitter taste receptor genes in mammalian evolution. Mol Biol Evol. 2003;20(5):805–14.CrossRefPubMedGoogle Scholar
  43. 43.
    Chandrashekar J, Hoon MA, Ryba NJ, Zuker CS. The receptors and cells for mammalian taste. Nature. 2006;444(7117):288–94.CrossRefPubMedGoogle Scholar
  44. 44.
    Kim D, Woo JA, Geffken E, An SS, Liggett SB. Coupling of airway smooth muscle bitter taste receptors to intracellular signaling and relaxation is via Galphai1, 2,3. Am J Respir Cell Mol Biol. 2017;56(6):762–71.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Zhang CH, Lifshitz LM, Uy KF, Ikebe M, Fogarty KE, ZhuGe R. The cellular and molecular basis of bitter tastant-induced bronchodilation. PLoS Biol. 2013;11(3):e1001501.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Camoretti-Mercado B, Pauer SH, Yong HM, Smith DC, Deshpande DA, An SS, et al. Pleiotropic effects of bitter taste receptors on [Ca2+]i mobilization, hyperpolarization, and relaxation of human airway smooth muscle cells. PLoS One. 2015;10(6):e0131582.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Prakash YS, Halayko AJ, Gosens R, Panettieri RA Jr, Camoretti-Mercado B, Penn RB, et al. An Official American Thoracic Society Research statement: current challenges facing research and therapeutic advances in airway remodeling. Am J Respir Crit Care Med. 2017;195(2):e4–e19.CrossRefPubMedGoogle Scholar
  48. 48.
    Nayak AP, Deshpande DA, and Penn RB. New targets for resolution of airway remodeling in obstructive lung diseases. F1000Res. 2018;7.CrossRefGoogle Scholar
  49. 49.
    Lloyd CM, Robinson DS. Allergen-induced airway remodelling. Eur Respir J. 2007;29(5):1020–32.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kim D, Cho S, Castano MA, Panettieri RA, Woo JA, Liggett SB. Biased TAS2R bronchodilators inhibit airway smooth muscle growth by downregulating phosphorylated extracellular signal-regulated kinase 1/2. Am J Respir Cell Mol Biol. 2019;60(5):532–40.CrossRefPubMedGoogle Scholar
  51. 51.
    Locksley RM. Asthma and allergic inflammation. Cell. 2010;140(6):777–83.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Barnes PJ, Pedersen S. Efficacy and safety of inhaled corticosteroids in asthma. Report of a workshop held in Eze, France, October 1992. Am Rev Respir Dis. 1993;148(4 Pt 2):S1–26.CrossRefPubMedGoogle Scholar
  53. 53.
    Barnes PJ. Efficacy of inhaled corticosteroids in asthma. J Allergy Clin Immunol. 1998;102(4 Pt 1):531–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Barnes PJ. Current issues for establishing inhaled corticosteroids as the antiinflammatory agents of choice in asthma. J Allergy Clin Immunol. 1998;101(4 Pt 2):S427–33.CrossRefPubMedGoogle Scholar
  55. 55.
    McCracken JL, Tripple JW, Calhoun WJ. Biologic therapy in the management of asthma. Curr Opin Allergy Clin Immunol. 2016;16(4):375–82.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    McGregor MC, Krings JG, Nair P, Castro M. Role of biologics in asthma. Am J Respir Crit Care Med. 2019;199(4):433–45.CrossRefPubMedGoogle Scholar
  57. 57.
    Pepper AN, Renz H, Casale TB, Garn H. Biologic therapy and novel molecular targets of severe asthma. J Allergy Clin Immunol Pract. 2017;5(4):909–16.CrossRefPubMedGoogle Scholar
  58. 58.
    Krasteva G, Canning BJ, Papadakis T, Kummer W. Cholinergic brush cells in the trachea mediate respiratory responses to quorum sensing molecules. Life Sci. 2012;91(21–22):992–6.CrossRefPubMedGoogle Scholar
  59. 59.
    •• Orsmark-Pietras C, James A, Konradsen JR, Nordlund B, Soderhall C, Pulkkinen V, et al. Transcriptome analysis reveals upregulation of bitter taste receptors in severe asthmatics. Eur Respir J. 2013;42(1):65–78. This is a clinical study demonstrating the expression changes in peripheral blood leukocytes TAS2Rs in asthmatics. CrossRefPubMedGoogle Scholar
  60. 60.
    Lee RJ, Chen B, Redding KM, Margolskee RF, Cohen NA. Mouse nasal epithelial innate immune responses to Pseudomonas aeruginosa quorum-sensing molecules require taste signaling components. Innate Immun. 2014;20(6):606–17.CrossRefPubMedGoogle Scholar
  61. 61.
    Lambrecht BN, Hammad H. The airway epithelium in asthma. Nat Med. 2012;18(5):684–92.CrossRefPubMedGoogle Scholar
  62. 62.
    Shah AS, Ben-Shahar Y, Moninger TO, Kline JN, Welsh MJ. Motile cilia of human airway epithelia are chemosensory. Science. 2009;325(5944):1131–4.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Finger TE, Bottger B, Hansen A, Anderson KT, Alimohammadi H, Silver WL. Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc Natl Acad Sci U S A. 2003;100(15):8981–6.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Saunders CJ, Reynolds SD, Finger TE. Chemosensory brush cells of the trachea. A stable population in a dynamic epithelium. Am J Respir Cell Mol Biol. 2013;49(2):190–6.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Tizzano M, Cristofoletti M, Sbarbati A, Finger TE. Expression of taste receptors in solitary chemosensory cells of rodent airways. BMC Pulm Med. 2011;11:3.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    •• Ekoff M, Choi JH, James A, Dahlen B, Nilsson G, Dahlen SE. Bitter taste receptor (TAS2R) agonists inhibit IgE-dependent mast cell activation. J Allergy Clin Immunol. 2014;134(2):475–8. This study demonstrated the functional effect of TAS2R activation in mast cells obtained from human subjects. CrossRefPubMedGoogle Scholar
  67. 67.
    Maurer S, Wabnitz GH, Kahle NA, Stegmaier S, Prior B, Giese T, et al. Tasting Pseudomonas aeruginosa biofilms: human neutrophils express the bitter receptor T2R38 as sensor for the quorum sensing molecule N-(3-oxododecanoyl)-l-homoserine lactone. Front Immunol. 2015;6:369.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Krasteva G, Canning BJ, Hartmann P, Veres TZ, Papadakis T, Muhlfeld C, et al. Cholinergic chemosensory cells in the trachea regulate breathing. Proc Natl Acad Sci U S A. 2011;108(23):9478–83.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Tizzano M, Gulbransen BD, Vandenbeuch A, Clapp TR, Herman JP, Sibhatu HM, et al. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc Natl Acad Sci U S A. 2010;107(7):3210–5.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Denning DW, Pashley C, Hartl D, Wardlaw A, Godet C, Del Giacco S, et al. Fungal allergy in asthma-state of the art and research needs. Clin Transl Allergy. 2014;4:14.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Gaida MM, Dapunt U, and Hansch GM. Sensing developing biofilms: the bitter receptor T2R38 on myeloid cells. Pathog Dis. 2016;74(3).CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Ogino H, Fujii M, Ono M, Maezawa K, Hori S, Kizu J. In vivo and in vitro effects of fluoroquinolones on lipopolysaccharide-induced pro-inflammatory cytokine production. J Infect Chemother. 2009;15(3):168–73.CrossRefPubMedGoogle Scholar
  73. 73.
    Ianaro A, Ialenti A, Maffia P, Sautebin L, Rombola L, Carnuccio R, et al. Anti-inflammatory activity of macrolide antibiotics. J Pharmacol Exp Ther. 2000;292(1):156–63.PubMedGoogle Scholar
  74. 74.
    Jeong JY, Jue DM. Chloroquine inhibits processing of tumor necrosis factor in lipopolysaccharide-stimulated RAW 264.7 macrophages. J Immunol. 1997;158(10):4901–7.PubMedGoogle Scholar
  75. 75.
    Schierbeck H, Wahamaa H, Andersson U, Harris HE. Immunomodulatory drugs regulate HMGB1 release from activated human monocytes. Mol Med. 2010;16(9–10):343–51.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Yasutomi M, Ohshima Y, Omata N, Yamada A, Iwasaki H, Urasaki Y, et al. Erythromycin differentially inhibits lipopolysaccharide- or poly(I:C)-induced but not peptidoglycan-induced activation of human monocyte-derived dendritic cells. J Immunol. 2005;175(12):8069–76.CrossRefPubMedGoogle Scholar
  77. 77.
    Vrancic M, Banjanac M, Nujic K, Bosnar M, Murati T, Munic V, et al. Azithromycin distinctively modulates classical activation of human monocytes in vitro. Br J Pharmacol. 2012;165(5):1348–60.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Woodman L, Siddiqui S, Cruse G, Sutcliffe A, Saunders R, Kaur D, et al. Mast cells promote airway smooth muscle cell differentiation via autocrine up-regulation of TGF-beta 1. J Immunol. 2008;181(7):5001–7.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Page S, Ammit AJ, Black JL, Armour CL. Human mast cell and airway smooth muscle cell interactions: implications for asthma. Am J Physiol Lung Cell Mol Physiol. 2001;281(6):L1313–23.CrossRefPubMedGoogle Scholar
  80. 80.
    Tran HTT, Herz C, Ruf P, Stetter R, Lamy E. Human T2R38 bitter taste receptor expression in resting and activated lymphocytes. Front Immunol. 2018;9:2949.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Salathe M. Regulation of mammalian ciliary beating. Annu Rev Physiol. 2007;69:401–22.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ajay P. Nayak
    • 1
  • Dominic Villalba
    • 1
  • Deepak A. Deshpande
    • 1
    Email author
  1. 1.Department of Medicine, Center for Translational Medicine and Division of Pulmonary, Allergy and Critical Care Medicine; and Jane & Leonard Korman Respiratory InstituteThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations