Advertisement

Genetic and Environmental Contributors for Celiac Disease

  • Gloria SerenaEmail author
  • Rosiane Lima
  • Alessio Fasano
Autoimmunity (TK Tarrant, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Autoimmunity

Abstract

Purpose of Review

Celiac disease (CD) is an autoimmune enteropathy triggered by gluten. The purpose of this review is to examine the major genetic and environmental factors that contribute to CD pathogenesis.

Recent Findings

We reviewed the current state of knowledge on the genetic and environmental components that play a role in CD onset. A genome-wide association study (GWAS) analysis has highlighted several genes other than HLA involved in CD. Recent studies have shown that HLA haplotype influences the microbiome composition in infants and that dysbiosis in the intestinal microflora, in turn, contributes to loss of tolerance to gluten. Recently, observational studies have discussed the hypothesis stating that breast-feeding had a protective role against CD onset.

Summary

CD etiology is influenced by genetic and environmental factors. A better understanding of these components would deepen our knowledge on the mechanisms that lead to loss of tolerance and could help in developing a more “personalized medicine.”

Keywords

Celiac disease HLA Microbiome Genetic Environment Gluten 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Serena G, Camhi S, Sturgeon C, Yan S, Fasano A. The role of gluten in celiac disease and type 1 diabetes. Nutrients. 2015;7(9):7143–62.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Thomas KE, Sapone A, Fasano A, Vogel SN. Gliadin stimulation of murine macrophage inflammatory gene expression and intestinal permeability are MyD88-dependent: role of the innate immune response in celiac disease. J Immunol. 2006;176(4):2512–21.PubMedGoogle Scholar
  3. 3.
    Fukunaga M, Ishimura N, Fukuyama C, Izumi D, Ishikawa N, Araki A, et al. Celiac disease in non-clinical populations of Japan. J Gastroenterol. 2018;53(2):208–14.PubMedGoogle Scholar
  4. 4.
    Balakireva AV, Zamyatnin AA. Properties of gluten intolerance: gluten structure, evolution, pathogenicity and detoxification capabilities. Nutrients. 2016;8(10).PubMedCentralGoogle Scholar
  5. 5.
    Skovbjerg H, Hansen GH, Niels-Christiansen LL, Anthonsen D, Ascher H, Midhagen G, et al. Intestinal tissue transglutaminase in coeliac disease of children and adults: ultrastructural localization and variation in expression. Scand J Gastroenterol. 2004;39(12):1219–27.PubMedGoogle Scholar
  6. 6.
    Fasano A, Berti I, Gerarduzzi T, Not T, Colletti RB, Drago S, et al. Prevalence of celiac disease in at-risk and not-at-risk groups in the United States: a large multicenter study. Arch Intern Med. 2003;163(3):286–92.PubMedGoogle Scholar
  7. 7.
    Dieli-Crimi R, Cenit MC, Nunez C. The genetics of celiac disease: a comprehensive review of clinical implications. J Autoimmun. 2015;64:26–41.PubMedGoogle Scholar
  8. 8.
    Lebwohl B, Sanders DS, Green PHR. Coeliac disease. Lancet. 2018;391(10115):70–81.PubMedGoogle Scholar
  9. 9.
    Kelly CP, Bai JC, Liu E, Leffler DA. Advances in diagnosis and management of celiac disease. Gastroenterology. 2015;148(6):1175–86.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Borghini R, Donato G, Marino M, Casale R, Tola MD, Picarelli A. In extremis diagnosis of celiac disease and concomitant wheat allergy. Turk J Gastroenterol. 2018;29(4):515–7.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Murad H, Jazairi B, Khansaa I, Olabi D, Khouri L. HLA-DQ2 and -DQ8 genotype frequency in Syrian celiac disease children: HLA-DQ relative risks evaluation. BMC Gastroenterol. 2018;18(1):70.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Fasano A, Catassi C. Clinical practice. Celiac disease. N Engl J Med. 2012;367(25):2419–26.Google Scholar
  13. 13.
    Garrote JA, Gomez-Gonzalez E, Bernardo D, Arranz E, Chirdo F. Celiac disease pathogenesis: the proinflammatory cytokine network. J Pediatr Gastroenterol Nutr. 2008;47(Suppl 1):S27–32.PubMedGoogle Scholar
  14. 14.
    Kim SM, Mayassi T, Jabri B. Innate immunity: actuating the gears of celiac disease pathogenesis. Best Pract Res Clin Gastroenterol. 2015;29(3):425–35.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Lammers KM, Chieppa M, Liu L, Liu S, Omatsu T, Janka-Junttila M, et al. Gliadin induces neutrophil migration via engagement of the formyl peptide receptor, FPR1. PLoS One. 2015;10(9):e0138338.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Lammers KM, Lu R, Brownley J, Lu B, Gerard C, Thomas K, et al. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology. 2008;135(1):194–204.e3.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Lebwohl B, Green PHR. New developments in celiac disease. Gastroenterol Clin N Am. 2019;48(1):xv–xvi.Google Scholar
  18. 18.
    Vilppula A, Kaukinen K, Luostarinen L, Krekela I, Patrikainen H, Valve R, et al. Clinical benefit of gluten-free diet in screen-detected older celiac disease patients. BMC Gastroenterol. 2011;11:136.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Ivarsson A, Myleus A, Norstrom F, van der Pals M, Rosen A, Hogberg L, et al. Prevalence of childhood celiac disease and changes in infant feeding. Pediatrics. 2013;131(3):e687–94.PubMedGoogle Scholar
  20. 20.
    Hogberg L, Falth-Magnusson K, Grodzinsky E, Stenhammar L. Familial prevalence of coeliac disease: a twenty-year follow-up study. Scand J Gastroenterol. 2003;38(1):61–5.PubMedGoogle Scholar
  21. 21.
    Caffarelli C, Di Mauro D, Mastrorilli C, Bottau P, Cipriani F, Ricci G. Solid food introduction and the development of food allergies. Nutrients. 2018;10(11).PubMedCentralGoogle Scholar
  22. 22.
    Chmielewska A, Piescik-Lech M, Szajewska H, Shamir R. Primary prevention of celiac disease: environmental factors with a focus on early nutrition. Ann Nutr Metab. 2015;67(Suppl 2):43–50.PubMedGoogle Scholar
  23. 23.
    Szajewska H, Shamir R, Mearin L, Ribes-Koninckx C, Catassi C, Domellof M, et al. Gluten introduction and the risk of coeliac disease: a position paper by the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J Pediatr Gastroenterol Nutr. 2016;62(3):507–13.PubMedGoogle Scholar
  24. 24.
    •• Lionetti E, Castellaneta S, Francavilla R, Pulvirenti A, Tonutti E, Amarri S, et al. Introduction of gluten, HLA status, and the risk of celiac disease in children. N Engl J Med. 2014;371(14):1295–303 COMMENT: Observational prospective study investigating the contribution of environmental factors to celiac disease onset.PubMedGoogle Scholar
  25. 25.
    •• Vriezinga SL, Auricchio R, Bravi E, Castillejo G, Chmielewska A, Crespo Escobar P, et al. Randomized feeding intervention in infants at high risk for celiac disease. N Engl J Med. 2014;371(14):1304–15 COMMENT: Observational prospective study investigating the contribution of environmental factors to celiac disease onset.PubMedGoogle Scholar
  26. 26.
    Savvateeva LV, Gorokhovets NV, Makarov VA, Serebryakova MV, Solovyev AG, Morozov SY, et al. Glutenase and collagenase activities of wheat cysteine protease Triticain-alpha: feasibility for enzymatic therapy assays. Int J Biochem Cell Biol. 2015;62:115–24.PubMedGoogle Scholar
  27. 27.
    Savvateeva LV, Zamyatnin AA. Prospects of developing medicinal therapeutic strategies and pharmaceutical design for effective gluten intolerance treatment. Curr Pharm Des. 2016;22(16):2439–49.PubMedGoogle Scholar
  28. 28.
    Tanner GJ, Howitt CA, Forrester RI, Campbell PM, Tye-Din JA, Anderson RP. Dissecting the T-cell response to hordeins in coeliac disease can develop barley with reduced immunotoxicity. Aliment Pharmacol Ther. 2010;32(9):1184–91.PubMedGoogle Scholar
  29. 29.
    Altenbach SB, Allen PV. Transformation of the US bread wheat ‘Butte 86’ and silencing of omega-5 gliadin genes. GM Crops. 2011;2(1):66–73.PubMedGoogle Scholar
  30. 30.
    Serena G, Kelly CP, Fasano A. Nondietary therapies for celiac disease. Gastroenterol Clin N Am. 2019;48(1):145–63.Google Scholar
  31. 31.
    Pisapia L, Camarca A, Picascia S, Bassi V, Barba P, Del Pozzo G, et al. HLA-DQ2.5 genes associated with celiac disease risk are preferentially expressed with respect to non-predisposing HLA genes: implication for anti-gluten T cell response. J Autoimmun. 2016;70:63–72.PubMedGoogle Scholar
  32. 32.
    Sollid LM, Markussen G, Ek J, Gjerde H, Vartdal F, Thorsby E. Evidence for a primary association of celiac disease to a particular HLA-DQ alpha/beta heterodimer. J Exp Med. 1989;169(1):345–50.Google Scholar
  33. 33.
    Sollid LM, Thorsby E. HLA susceptibility genes in celiac disease: genetic mapping and role in pathogenesis. Gastroenterology. 1993;105(3):910–22.PubMedGoogle Scholar
  34. 34.
    Dubois PC, Trynka G, Franke L, Hunt KA, Romanos J, Curtotti A, et al. Multiple common variants for celiac disease influencing immune gene expression. Nat Genet. 2010;42(4):295–302.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Hunt KA, van Heel DA. Recent advances in coeliac disease genetics. Gut. 2009;58(4):473–6.PubMedGoogle Scholar
  36. 36.
    Greco L, Romino R, Coto I, Di Cosmo N, Percopo S, Maglio M, et al. The first large population based twin study of coeliac disease. Gut. 2002;50(5):624–8.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Schirru E, Jores RD, Cicotto L, Frau F, De Virgiliis S, Rossino R, et al. High frequency of low-risk human leukocyte antigen class II genotypes in latent celiac disease. Hum Immunol. 2011;72(2):179–82.PubMedGoogle Scholar
  38. 38.
    Abraham G, Tye-Din JA, Bhalala OG, Kowalczyk A, Zobel J, Inouye M. Accurate and robust genomic prediction of celiac disease using statistical learning. PLoS Genet. 2014;10(2):e1004137.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Leonard MM, Serena G, Sturgeon C, Fasano A. Genetics and celiac disease: the importance of screening. Expert Rev Gastroenterol Hepatol. 2015;9(2):209–15.PubMedGoogle Scholar
  40. 40.
    Tripathi A, Lammers KM, Goldblum S, Shea-Donohue T, Netzel-Arnett S, Buzza MS, et al. Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2. Proc Natl Acad Sci U S A. 2009;106(39):16799–804.PubMedPubMedCentralGoogle Scholar
  41. 41.
    •• Leonard MM, Bai Y, Serena G, Nickerson KP, Camhi S, Sturgeon C, et al. RNA sequencing of intestinal mucosa reveals novel pathways functionally linked to celiac disease pathogenesis. PLoS One. 2019;14(4):e0215132 COMMENT: Study highlighting novel non-HLA genes involved in celiac pathogenesis.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Catassi C, Gatti S, Fasano A. The new epidemiology of celiac disease. J Pediatr Gastroenterol Nutr. 2014;59(Suppl 1):S7–9.PubMedGoogle Scholar
  43. 43.
    Malamut G, Cellier C. Refractory celiac disease: epidemiology and clinical manifestations. Dig Dis. 2015;33(2):221–6.PubMedGoogle Scholar
  44. 44.
    Akobeng AK, Heller RF. Assessing the population impact of low rates of breast feeding on asthma, coeliac disease and obesity: the use of a new statistical method. Arch Dis Child. 2007;92(6):483–5.PubMedGoogle Scholar
  45. 45.
    Silano M, Agostoni C, Guandalini S. Effect of the timing of gluten introduction on the development of celiac disease. World J Gastroenterol. 2010;16(16):1939–42.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Agostoni C, Shamir R. Can a change in policy of complementary infant feeding reduce the risk for type 1 diabetes and celiac disease? Pediatr Endocrinol Rev. 2008;6(1):2–4.PubMedGoogle Scholar
  47. 47.
    Troncone R, Ivarsson A, Szajewska H, Mearin ML. Members of European multistakeholder platform on CD. Review article: future research on coeliac disease - a position report from the European multistakeholder platform on coeliac disease (CDEUSSA). Aliment Pharmacol Ther. 2008;27(11):1030–43.PubMedGoogle Scholar
  48. 48.
    Bethune MT, Khosla C. Parallels between pathogens and gluten peptides in celiac sprue. PLoS Pathog. 2008;4(2):e34.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Jabri B, Sollid LM. Tissue-mediated control of immunopathology in coeliac disease. Nat Rev Immunol. 2009;9(12):858–70.PubMedGoogle Scholar
  50. 50.
    Bach JF. The protective effect of infections on immune disorders. J Pediatr Gastroenterol Nutr. 2005;40(Suppl 1):S8.PubMedGoogle Scholar
  51. 51.
    •• Lerner A, Arleevskaya M, Schmiedl A, Matthias T. Microbes and viruses are bugging the gut in celiac disease. Are they friends or foes? Front Microbiol. 2017;8:1392 COMMENT: Comprehensive review summarizing the role of infections in celiac disease pathogenesis.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Sandberg-Bennich S, Dahlquist G, Kallen B. Coeliac disease is associated with intrauterine growth and neonatal infections. Acta Paediatr. 2002;91(1):30–3.PubMedGoogle Scholar
  53. 53.
    Verdu EF, Galipeau HJ, Jabri B. Novel players in coeliac disease pathogenesis: role of the gut microbiota. Nat Rev Gastroenterol Hepatol. 2015;12(9):497–506.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Rostami-Nejad M, Hejazi SH, Pena AS, Asadzadeh-Aghdaei H, Rostami K, Volta U, et al. Contributions of HLA haplotypes, IL8 level and toxoplasma gondii infection in defining celiac disease’s phenotypes. BMC Gastroenterol. 2018;18(1):66.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Carroccio A, Cavataio F, Montalto G, Paparo F, Troncone R, Iacono G. Treatment of giardiasis reverses “active” coeliac disease to “latent” coeliac disease. Eur J Gastroenterol Hepatol. 2001;13(9):1101–5.PubMedGoogle Scholar
  56. 56.
    Pozo-Rubio T, Olivares M, Nova E, De Palma G, Mujico JR, Ferrer MD, et al. Immune development and intestinal microbiota in celiac disease. Clin Dev Immunol. 2012;2012:654143.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Stene LC, Honeyman MC, Hoffenberg EJ, Haas JE, Sokol RJ, Emery L, et al. Rotavirus infection frequency and risk of celiac disease autoimmunity in early childhood: a longitudinal study. Am J Gastroenterol. 2006;101(10):2333–40.PubMedGoogle Scholar
  58. 58.
    Plot L, Amital H, Barzilai O, Ram M, Bizzaro N, Shoenfeld Y. Infections may have a protective role in the etiopathogenesis of celiac disease. Ann N Y Acad Sci. 2009;1173:670–4.PubMedGoogle Scholar
  59. 59.
    Bartels LE, Jepsen P, Christensen LA, Gerdes LU, Vilstrup H, Dahlerup JF. Diagnosis of helicobacter pylori infection is associated with lower prevalence and subsequent incidence of Crohn’s disease. J Crohns Colitis. 2016;10(4):443–8.PubMedGoogle Scholar
  60. 60.
    Aarup A, Pedersen TX, Junker N, Christoffersen C, Bartels ED, Madsen M, et al. Hypoxia-inducible factor-1alpha expression in macrophages promotes development of atherosclerosis. Arterioscler Thromb Vasc Biol. 2016;36(9):1782–90.PubMedGoogle Scholar
  61. 61.
    Ruggiero MA, Gordon DP, Orrell TM, Bailly N, Bourgoin T, Brusca RC, et al. A higher level classification of all living organisms. PLoS One. 2015;10(4):e0119248.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Silvester JA, Leffler DA. Is autoimmunity infectious? The effect of gastrointestinal viral infections and vaccination on risk of celiac disease autoimmunity. Clin Gastroenterol Hepatol. 2017;15(5):703–5.PubMedGoogle Scholar
  63. 63.
    Selmi C. Are helminths to be trusted as allies in the war against autoimmunity and chronic inflammation? Isr Med Assoc J. 2016;18(3–4):139–40.PubMedGoogle Scholar
  64. 64.
    Lund ME, O’Brien BA, Hutchinson AT, Robinson MW, Simpson AM, Dalton JP, et al. Secreted proteins from the helminth Fasciola hepatica inhibit the initiation of autoreactive T cell responses and prevent diabetes in the NOD mouse. PLoS One. 2014;9(1):e86289.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Leonard MM, Weir DC, DeGroote M, Mitchell PD, Singh P, Silvester JA, et al. Value of IgA tTG in predicting mucosal recovery in children with celiac disease on a gluten-free diet. J Pediatr Gastroenterol Nutr. 2017;64(2):286–91.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Turroni F, Ribbera A, Foroni E, van Sinderen D, Ventura M. Human gut microbiota and bifidobacteria: from composition to functionality. Antonie Van Leeuwenhoek. 2008;94(1):35–50.PubMedGoogle Scholar
  67. 67.
    Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–8.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Cukrowska B, Sowinska A, Bierla JB, Czarnowska E, Rybak A, Grzybowska-Chlebowczyk U. Intestinal epithelium, intraepithelial lymphocytes and the gut microbiota - key players in the pathogenesis of celiac disease. World J Gastroenterol. 2017;23(42):7505–18.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Cukrowska B, Kozakova H, Rehakova Z, Sinkora J, Tlaskalova-Hogenova H. Specific antibody and immunoglobulin responses after intestinal colonization of germ-free piglets with non-pathogenic Escherichia coli O86. Immunobiology. 2001;204(4):425–33.PubMedGoogle Scholar
  71. 71.
    Tlaskalova-Hogenova H, Stepankova R, Kozakova H, Hudcovic T, Vannucci L, Tuckova L, et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol. 2011;8(2):110–20.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Mikulic J, Longet S, Favre L, Benyacoub J, Corthesy B. Secretory IgA in complex with Lactobacillus rhamnosus potentiates mucosal dendritic cell-mediated Treg cell differentiation via TLR regulatory proteins, RALDH2 and secretion of IL-10 and TGF-beta. Cell Mol Immunol. 2017;14(6):546–56.PubMedGoogle Scholar
  73. 73.
    Ismail AS, Behrendt CL, Hooper LV. Reciprocal interactions between commensal bacteria and gamma delta intraepithelial lymphocytes during mucosal injury. J Immunol. 2009;182(5):3047–54.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Sekirov I, Finlay BB. The role of the intestinal microbiota in enteric infection. J Physiol. 2009;587(Pt 17):4159–67.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Abdellatif AM, Sarvetnick NE. Current understanding of the role of gut dysbiosis in type 1 diabetes. J Diabetes. 2019.Google Scholar
  76. 76.
    Castaner O, Goday A, Park YM, Lee SH, Magkos F, Shiow STE, et al. The gut microbiome profile in obesity: a systematic review. Int J Endocrinol. 2018;2018:4095789.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Zuo T, Ng SC. The gut microbiota in the pathogenesis and therapeutics of inflammatory bowel disease. Front Microbiol. 2018;9:2247.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Li Q, Han Y, Dy ABC, Hagerman RJ. The gut microbiota and autism spectrum disorders. Front Cell Neurosci. 2017;11:120.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Girbovan A, Sur G, Samasca G, Lupan I. Dysbiosis a risk factor for celiac disease. Med Microbiol Immunol. 2017;206(2):83–91.PubMedGoogle Scholar
  80. 80.
    Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. J Clin Pathol. 2009;62(3):264–9.PubMedGoogle Scholar
  81. 81.
    Ou G, Hedberg M, Horstedt P, Baranov V, Forsberg G, Drobni M, et al. Proximal small intestinal microbiota and identification of rod-shaped bacteria associated with childhood celiac disease. Am J Gastroenterol. 2009;104(12):3058–67.PubMedGoogle Scholar
  82. 82.
    De Palma G, Cinova J, Stepankova R, Tuckova L, Sanz Y. Pivotal Advance: Bifidobacteria and Gram-negative bacteria differentially influence immune responses in the proinflammatory milieu of celiac disease. J Leukoc Biol. 2010;87(5):765–78.PubMedGoogle Scholar
  83. 83.
    Di Cagno R, De Angelis M, De Pasquale I, Ndagijimana M, Vernocchi P, Ricciuti P, et al. Duodenal and faecal microbiota of celiac children: molecular, phenotype and metabolome characterization. BMC Microbiol. 2011;11:219.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Wacklin P, Kaukinen K, Tuovinen E, Collin P, Lindfors K, Partanen J, et al. The duodenal microbiota composition of adult celiac disease patients is associated with the clinical manifestation of the disease. Inflamm Bowel Dis. 2013;19(5):934–41.PubMedGoogle Scholar
  85. 85.
    Leonard MM, Camhi S, Kenyon V, Betensky RA, Sturgeon C, Yan S, et al. Targeted genotyping for the prediction of celiac disease autoimmunity development in patients with type 1 diabetes and their family members. World J Diabetes. 2019;10(3):189–99.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Sellitto M, Bai G, Serena G, Fricke WF, Sturgeon C, Gajer P, et al. Proof of concept of microbiome-metabolome analysis and delayed gluten exposure on celiac disease autoimmunity in genetically at-risk infants. PLoS One. 2012;7(3):e33387.PubMedPubMedCentralGoogle Scholar
  87. 87.
    •• Olivares M, Walker AW, Capilla A, Benitez-Paez A, Palau F, Parkhill J, et al. Gut microbiota trajectory in early life may predict development of celiac disease. Microbiome. 2018;6(1):36 COMMENT: study highlighting changes in microbiome composition prior to development of celiac disease in genetically predisposed infants.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Palma GD, Capilla A, Nova E, Castillejo G, Varea V, Pozo T, et al. Influence of milk-feeding type and genetic risk of developing coeliac disease on intestinal microbiota of infants: the PROFICEL study. PLoS One. 2012;7(2):e30791.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Olivares M, Neef A, Castillejo G, Palma GD, Varea V, Capilla A, et al. The HLA-DQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease. Gut. 2015;64(3):406–17.PubMedGoogle Scholar
  90. 90.
    Langdon KJ, Fox AB, King LA, King DW, Eisen S, Vogt D. Examination of the dynamic interplay between posttraumatic stress symptoms and alcohol misuse among combat-exposed Operation Enduring Freedom (OEF)/Operation Iraqi Freedom (OIF) Veterans. J Affect Disord. 2016;196:234–42.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Martin VJ, Leonard MM, Fiechtner L, Fasano A. Transitioning from descriptive to mechanistic understanding of the microbiome: the need for a prospective longitudinal approach to predicting disease. J Pediatr. 2016;179:240–8.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Serena G, Yan S, Camhi S, Patel S, Lima RS, Sapone A, et al. Proinflammatory cytokine interferon-gamma and microbiome-derived metabolites dictate epigenetic switch between forkhead box protein 3 isoforms in coeliac disease. Clin Exp Immunol. 2017;187(3):490–506.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Freire R, Ingano L, Serena G, Cetinbas M, Anselmo A, Sapone A, et al. Human gut derived-organoids provide model to study gluten response and effects of microbiota-derived molecules in celiac disease. Sci Rep. 2019;9(1):7029.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Caminero A, McCarville JL, Galipeau HJ, Deraison C, Bernier SP, Constante M, et al. Duodenal bacterial proteolytic activity determines sensitivity to dietary antigen through protease-activated receptor-2. Nat Commun. 2019;10(1):1198.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Caminero A, McCarville JL, Zevallos VF, Pigrau M, Yu XB, Jury J, et al. Lactobacilli degrade wheat amylase trypsin inhibitors to reduce intestinal dysfunction induced by immunogenic wheat proteins. Gastroenterology. 2019.Google Scholar
  96. 96.
    Francavilla R, De Angelis M, Rizzello CG, Cavallo N, Dal Bello F, Gobbetti M. Selected probiotic lactobacilli have the capacity to hydrolyze gluten peptides during simulated gastrointestinal digestion. Appl Environ Microbiol. 2017;83(14).Google Scholar
  97. 97.
    Francavilla R, Ercolini D, Piccolo M, Vannini L, Siragusa S, De Filippis F, et al. Salivary microbiota and metabolome associated with celiac disease. Appl Environ Microbiol. 2014;80(11):3416–25.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Serena G. Analysis of blood and fecal microbiome profile in patients with celiac disease. Human Microb J. 2019;11.Google Scholar
  99. 99.
    Traykova D, Schneider B, Chojkier M, Buck M. Blood microbiome quantity and the hyperdynamic circulation in decompensated cirrhotic patients. PLoS One. 2017;12(2):e0169310.PubMedPubMedCentralGoogle Scholar
  100. 100.
    De Angelis M, Rizzello CG, Fasano A, Clemente MG, De Simone C, Silano M, et al. VSL#3 probiotic preparation has the capacity to hydrolyze gliadin polypeptides responsible for celiac sprue. Biochim Biophys Acta. 2006;1762(1):80–93.PubMedGoogle Scholar
  101. 101.
    Primec M, Micetic-Turk D, Langerholc T. Analysis of short-chain fatty acids in human feces: a scoping review. Anal Biochem. 2017;526:9–21.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Celiac Research, Mucosal Immunology and Biology Research Center and Division of Pediatric Gastroenterology and NutritionMassachusetts General HospitalBostonUSA

Personalised recommendations