Advertisement

Vitamin D and Otitis Media

  • Rebecca E. WalkerEmail author
  • Jim Bartley
  • Carlos A. CamargoJr
  • Edwin A. Mitchell
Otitis (DP Skoner, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Otitis

Abstract

Purpose of Review

To examine the relationship between vitamin D and otitis media.

Recent Findings

Vitamin D deficiency has been associated with several respiratory diseases, including otitis media. Vitamin D supplementation may reduce the risk of otitis media. This relationship may be explained by vitamin D supporting the immune system by upregulating antimicrobial peptides which are effective against otopathogens and biofilm formation, supporting a less inflammatory immune response, or promoting beneficial commensal bacteria.

Summary

This review will explore risk factors of both otitis media and vitamin D deficiency, the evidence of vitamin D being beneficial for various forms of otitis media, and possible mechanisms of action.

Keywords

Otitis media Vitamin D Viral infections Respiratory microbiota Antimicrobial peptides Cytokines Biofilms Upper respiratory tract infections 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Informed Consent

No information or photographs identifying particular individuals are included in this article.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Gates GA, Klein JO, Lim DJ, Mogi G, Ogra PL, Pararella MM, et al. Recent advances in otitis media. 1. Definitions, terminology, and classification of otitis media. Ann Otol Rhinol Laryngol Suppl. 2002;188:8.PubMedGoogle Scholar
  2. 2.
    American Academy of Pediatrics and American Academy of Family Physicians. Diagnosis and management of acute otitis media. Pediatrics. 2004;113(5):1451–65.Google Scholar
  3. 3.
    Verhoeff M, van der Veen EL, Rovers MM, Sanders EAM, Schilder AGM. Chronic suppurative otitis media: a review. Int J Pediatr Otorhinolaryngol. 2006;70(1):1–12.PubMedGoogle Scholar
  4. 4.
    Monasta L, Ronfani L, Marchetti F, Montico M, Brumatti LV, Bavcar A, et al. Burden of disease caused by otitis media: systematic review and global estimates. PLoS One. 2012;7(4):e36226.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Dewey C, Midgeley E, Maw R. The relationship between otitis media with effusion and contact with other children in a British cohort studied from 8 months to 3 1/2 years. Int J Pediatr Otorhinolaryngol. 2000;55(1):33–45.PubMedGoogle Scholar
  6. 6.
    Chalmers D, Stewart I, Silva P, Mulvena A. Otitis media with effusion in children: the Dunedin study. London: Mac Keith Press; 1989.Google Scholar
  7. 7.
    Casselbrant ML, Brostoff LM, Cantekin EI, Flaherty MR, Doyle WJ, Bluestone CD, et al. Otitis media with effusion in preschool children. Laryngoscope. 1985;95(4):428–36.PubMedGoogle Scholar
  8. 8.
    Marchisio P, Principi N, Passali D, Salpietro DC, Boschi G, Chetri G, et al. Epidemiology and treatment of otitis media with effusion in children in the first year of primary school. Acta Otolaryngol. 1998;118(4):557–62.PubMedGoogle Scholar
  9. 9.
    Williamson I, Dunleavey J, Bain J, Robinson D. The natural history of otitis media with effusion – a three-year study of the incidence and prevalence of abnormal tympanograms in four south West Hampshire infant and first schools. J Laryngol Otol. 1994;108:930–4.  https://doi.org/10.1017/S0022215100128567.PubMedGoogle Scholar
  10. 10.
    Bhutta MF. Epidemiology and pathogenesis of otitis media: construction of a phenotype landscape. Audiol Neurootol. 2014;19(3):210–23.PubMedGoogle Scholar
  11. 11.
    Martines F, Bentivegna D, Di Piazza F, Martinciglio G, Sciacca V, Martines E. The point prevalence of otitis media with effusion among primary school children in Western Sicily. Eur Arch Otorhinolaryngol. 2010;267(5):709–14.  https://doi.org/10.1007/s00405-009-1131-4.PubMedGoogle Scholar
  12. 12.
    Gultekin E, Develioğlu ÖN, Yener M, Ozdemir I, Külekçi M. Prevalence and risk factors for persistent otitis media with effusion in primary school children in Istanbul, Turkey. Auris Nasus Larynx. 2010;37(2):145–9.PubMedGoogle Scholar
  13. 13.
    Schappert SM. Office visits for otitis media: United States, 1975-90. Adv Data. 1992;214:1–19.Google Scholar
  14. 14.
    Finkelstein JA, Metlay JP, Davis RL, Rifas-Shiman SL, Dowell SF, Platt R. Antimicrobial use in defined populations of infants and young children. Arch Pediatr Adolesc Med. 2000;154(4):395–400.PubMedGoogle Scholar
  15. 15.
    Gunasekera H, Knox S, Morris P, Britt H, McIntyre P, Craig JC. The spectrum and management of otitis media in Australian indigenous and nonindigenous children: a national study. Pediatr Infect Dis J. 2007;26(8):689–92.PubMedGoogle Scholar
  16. 16.
    Australian Institute of Health and Welfare. Australian hospital statistics 2009–10. Canberra: Australian Institute of Health and Welfare; 2011. p. 138.Google Scholar
  17. 17.
    De Melker RA. Treating persistent glue ear in children. BMJ. 1993;306(6869):5–6.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Rosenfeld RM, Shin JJ, Schwartz SR, Coggins R, Gagnon L, Hackell JM, et al. Clinical practice guideline otitis media with effusion (update). Otolaryngol Head Neck Surg. 2016;154(1 suppl):S1–S41.PubMedGoogle Scholar
  19. 19.
    Akcan FA, Dündar Y, Akcan HB, Uluat A, Cebeci D, Ünlü İ. Evaluation of nasal mucociliary clearance time in patients with vitamin-D deficiency. Eur Arch Otorhinolaryngol 2019;276:1075-80.PubMedGoogle Scholar
  20. 20.
    Liu PT, Stenger S, Tang DH, Modlin RL. Cutting edge: vitamin D-mediated human antimicrobial activity against mycobacterium tuberculosis is dependent on the induction of cathelicidin. J Immunol. 2007;179(4):2060–3.PubMedGoogle Scholar
  21. 21.
    Ooi JH, Li Y, Rogers CJ, Cantorna MT. Vitamin D regulates the gut microbiome and protects mice from dextran sodium sulfate–induced colitis. J Nutr. 2013;143(10):1679–86.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Camargo CA, Ganmaa D, Frazier AL, Kirchberg FF, Stuart JJ, Kleinman K, et al. Randomized trial of vitamin D supplementation and risk of acute respiratory infection in Mongolia. Pediatrics. 2012;130(3):e561–e7.PubMedGoogle Scholar
  23. 23.
    Martineau AR, Jolliffe DA, Hooper RL, Greenberg L, Aloia JF, Bergman P, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Martineau A, Takeda A, Nurmatov U, Sheikh A, Griffiths CJ. Vitamin D for the management of asthma. Cochrane Database Syst Rev. 2016;9:CD011511.PubMedGoogle Scholar
  25. 25.
    Walker RE, Bartley J, Camargo CA, Flint D, Thompson J, Mitchell EA. Higher serum 25 (OH) D concentration is associated with lower risk of chronic otitis media with effusion: a case control study. Acta Paediatr. 2017;106:1487–92.PubMedGoogle Scholar
  26. 26.
    Marom T, Marchisio P, Tamir SO, Torretta S, Gavriel H, Esposito S. Complementary and alternative medicine treatment options for otitis media: a systematic review. Medicine. 2016;95(6):e2695.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Cashman KD, Dowling KG, Škrabáková Z, Gonzalez-Gross M, Valtueña J, De Henauw S, et al. Vitamin D deficiency in Europe: pandemic? Am J Clin Nutr. 2016;103(4):1033–44.  https://doi.org/10.3945/ajcn.115.120873.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Looker AC, Cl J, Lacher DA, Pfeiffer CM, Schleicher RL, Sempos CT. Vitamin D status: United States, 2001–2006. NCHS Data Brief. 2011;59(1941–4927 (Electronic)):1–8.Google Scholar
  29. 29.
    Val S, Poley M, Anna K, Nino G, Brown K, Pérez-Losada M, et al. Characterization of mucoid and serous middle ear effusions from patients with chronic otitis media: implication of different biological mechanisms? Pediatr Res. 2018;84(2):296–305.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Tos M, Bak-Pedersen K. Goblet cell population in the pathological middle ear and eustachian tube of children and adults. Ann Otol Rhinol Laryngol. 1977;86(2):209–18.PubMedGoogle Scholar
  31. 31.
    Cayé-Thomasen P, Tos M. Histopathologic differences due to bacterial species in acute otitis media. Int J Pediatr Otorhinolaryngol. 2002;63(2):99–110.PubMedGoogle Scholar
  32. 32.
    Walker RE, Walker CG, Camargo CA Jr, Bartley J, Flint D, Thompson JMD, et al. Nasal microbial composition and chronic otitis media with effusion: a case-control study. PLoS One. 2019;14(2):e0212473.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Ngo CC, Massa HM, Thornton RB, Cripps AW. Predominant bacteria detected from the middle ear fluid of children experiencing otitis media: a systematic review. PLoS One. 2016;11(3):e0150949.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Yeo SG, Park DC, Hong SM, Cha CI, Kim MG. Bacteriology of chronic suppurative otitis media–a multicenter study. Acta Otolaryngol. 2007;127(10):1062–7.PubMedGoogle Scholar
  35. 35.
    Lee H-Y, Andalibi A, Webster P, Moon S-K, Teufert K, Kang S-H, et al. Antimicrobial activity of innate immune molecules against Streptococcus pneumoniae, Moraxella catarrhalis and nontypeable Haemophilus influenzae. BMC Infect Dis. 2004;4(1):12.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Val S, Poley M, Brown K, Choi R, Jeong S, Colberg-Poley A, et al. Proteomic characterization of middle ear fluid confirms neutrophil extracellular traps as a predominant innate immune response in chronic otitis media. PLoS One. 2016;11(4):e0152865.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Yellon RF, Leonard G, Marucha PT, Craven R, Carpenter RJ, Lehmann WB, et al. Characterization of cytokines present in middle ear effusions. Laryngoscope. 1991;101(2):165–9.  https://doi.org/10.1288/00005537-199102000-00011.PubMedGoogle Scholar
  38. 38.
    S-q Z, Li J, Liu H, Zhang Q-g, Wang Y, D-m H. Role of interleukin-10 and transforming growth factor beta 1 in otitis media with effusion. Chin Med J. 2009;122(18):2149–54.Google Scholar
  39. 39.
    Yellon RF, Doyle WJ, Whiteside TL, Diven WF, March AR, Fireman P. Cytokines, immunoglobulins, and bacterial pathogens in middle ear effusions. Arch Otolaryngol Head Neck Surg. 1995;121(8):865–9.  https://doi.org/10.1001/archotol.1995.01890080033006.PubMedGoogle Scholar
  40. 40.
    Lin J, Haruta A, Kawano H, Ho SB, Adams GL, Juhn SK, et al. Induction of mucin gene expression in middle ear of rats by tumor necrosis factor—α: potential cause for mucoid otitis media. J Infect Dis. 2000;182(3):882–7.PubMedGoogle Scholar
  41. 41.
    Smirnova MG, Birchall JP, Pearson JP. In vitro study of IL-8 and goblet cells: possible role of IL-8 in the aetiology of otitis media with effusion. Acta Otolaryngol. 2002;122(2):146–52.PubMedGoogle Scholar
  42. 42.
    Sobol SE, Taha R, Schloss MD, Mazer BD, Manoukian JJ, Tewfik TL, et al. Th2 cytokine expression in atopic children with otitis media with effusion. J Allergy Clin Immunol. 2002;109(Supplement 1):S63–S.Google Scholar
  43. 43.
    Jang C-H, Kim Y-H. Characterization of cytokines present in pediatric otitis media with effusion: comparison of allergy positive and negative. Int J Pediatr Otorhinolaryngol. 2002;66(1):37–40.PubMedGoogle Scholar
  44. 44.
    Thornton RB, Wiertsema SP, Kirkham L-AS, Rigby PJ, Vijayasekaran S, Coates HL, et al. Neutrophil extracellular traps and bacterial biofilms in middle ear effusion of children with recurrent acute otitis media–a potential rreatment target. PLoS One. 2013;8(2):e53837.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Hall-Stoodley L, Hu FZ, Gieseke A, Nistico L, Nguyen D, Hayes J, et al. Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA. 2006;296(2):202–11.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Slinger R, Chan F, Ferris W, Yeung S-W, St. Denis M, Gaboury I, et al. Multiple combination antibiotic susceptibility testing of nontypeable Haemophilus influenzae biofilms. Diagn Microbiol Infect Dis. 2006;56(3):247–53.  https://doi.org/10.1016/j.diagmicrobio.2006.04.012.PubMedGoogle Scholar
  47. 47.
    Aryan Z, Rezaei N, Camargo CA Jr. Vitamin D status, aeroallergen sensitization, and allergic rhinitis: a systematic review and meta-analysis. Int Rev Immunol. 2017;36(1):41–53.PubMedGoogle Scholar
  48. 48.
    Walker RE, Bartley J, Flint D, Thompson JM, Mitchell EA. Determinants of chronic otitis media with effusion in preschool children: a case-control study. BMC Pediatr. 2017;17(1):4.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Chun RF, Peercy BE, Adams JS, Hewison M. Vitamin D binding protein and monocyte response to 25-hydroxyvitamin D and 1, 25-dihydroxyvitamin D: analysis by mathematical modeling. PLoS One. 2012;7(1):e30773.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Nielson CM, Jones KS, Chun RF, Jacobs JM, Wang Y, Hewison M, et al. Free 25-hydroxyvitamin D: impact of vitamin D binding protein assays on racial-genotypic associations. J Clin Endocrinol Metab. 2016;101(5):2226–34.  https://doi.org/10.1210/jc.2016-1104.PubMedPubMedCentralGoogle Scholar
  51. 51.
    •• Marchisio P, Consonni D, Baggi E, Zampiero A, Bianchini S, Terranova L, et al. Vitamin D supplementation reduces the risk of acute otitis media in otitis-prone children. Pediatr Infect Dis J. 2013;32(10):1055–60 Only study of vitamin D supplementation for OM. PubMedGoogle Scholar
  52. 52.
    Love JF, Tran-Winkler HJ, Wessels MR. Vitamin D and the human antimicrobial peptide LL-37 enhance group a streptococcus resistance to killing by human cells. MBio. 2012;3(5):e00394–12.PubMedPubMedCentralGoogle Scholar
  53. 53.
    • Akcan FA, Dündar Y, Akcan HB, Uluat A, Cebeci D, Sungur MA, et al. Clinical role of vitamin D in prognosis of otitis media with effusion. Int J Pediatr Otorhinolaryngol. 2018;105:1–5.  https://doi.org/10.1016/j.ijporl.2017.11.030 Lower vitamin D associated with COME. PubMedGoogle Scholar
  54. 54.
    • Cayir A, Turan MI, Ozkan O, Cayir Y. Vitamin D levels in children diagnosed with acute otitis media. J Pak Med Assoc. 2014;64(11):1274–7 Lower vitamin D associated with AOM. PubMedGoogle Scholar
  55. 55.
    Cayir A, Turan MI, Ozkan O, Cayir Y, Kaya A, Davutoglu S et al. Serum vitamin D levels in children with recurrent otitis media. Eur Arch Otorhinolaryngol. 2014;271:689–93.PubMedGoogle Scholar
  56. 56.
    Linday LA, Shindledecker RD, Dolitsky JN, Chen TC, Holick MF. Plasma 25-hydroxyvitamin D levels in young children undergoing placement of tympanostomy tubes. Ann Otol Rhinol Laryngol. 2008;117(10):740–4.PubMedGoogle Scholar
  57. 57.
    Elemraid MA, Mackenzie IJ, Fraser WD, Harper G, Faragher B, Atef Z, et al. A case-control study of nutritional factors associated with chronic suppurative otitis media in yemeni children. Eur J Clin Nutr 2011;65(8):895-902.PubMedGoogle Scholar
  58. 58.
    Park M, Lee JS, Lee JH, Oh SH, Park MK. Prevalence and risk factors of chronic otitis media: the Korean national health and nutrition examination survey 2010–2012. PLoS One. 2015;10(5):e0125905.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Hosseini S, Khajavi M, Eftekharian A, Akbari N. Vitamin D levels in children with otitis media with effusion: a case-control study. Thrita. 2016;5:e31977Google Scholar
  60. 60.
    Li H-B, Tai X-H, Sang Y-H, Jia J-P, Xu Z-M, Cui X-F et al. Association between vitamin D and development of otitis media: a PRISMA-compliant meta-analysis and systematic review. Medicine (Baltimore) 2016;95:e4739.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Thornton KA, Marín C, Mora-Plazas M, Villamor E. Vitamin D deficiency associated with increased incidence of gastrointestinal and ear infections in school-age children. Pediatr Infect Dis J. 2013;32:585–93.PubMedGoogle Scholar
  62. 62.
    Adams JS, Hewison M. Unexpected actions of vitamin D: new perspectives on the regulation of innate and adaptive immunity. Nat Rev Endocrinol. 2008;4(2). doi: https://doi.org/10.1038/ncpendmet0716.Google Scholar
  63. 63.
    Cannell JJ, Vieth R, Willett W, Zasloff M, Hathcock JN, White JH, et al. Cod liver oil, vitamin a toxicity, frequent respiratory infections, and the vitamin D deficiency epidemic. Ann Otol Rhinol Laryngol. 2008;117(11):864–70.PubMedGoogle Scholar
  64. 64.
    Bhan I, Camargo CA, Wenger J, Ricciardi C, Ye J, Borregaard N, et al. Circulating levels of 25-hydroxyvitamin D and human cathelicidin in healthy adults. J Allergy Clin Immunol. 2011;127(5):1302–4.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Stukes TM, Shary JR, Wei W, Ebeling MD, Dezsi KB, Shary FS, et al. Circulating cathelicidin concentrations in a cohort of healthy children: influence of age, body composition, gender and vitamin D status. PLoS One. 2016;11(5):e0152711.  https://doi.org/10.1371/journal.pone.0152711.PubMedPubMedCentralGoogle Scholar
  66. 66.
    McGillivary G, Ray WC, Bevins CL, Munson RS Jr, Bakaletz LO. A member of the cathelicidin family of antimicrobial peptides is produced in the upper airway of the chinchilla and its mRNA expression is altered by common viral and bacterial co-pathogens of otitis media. Mol Immunol. 2007;44(9):2446–58.PubMedGoogle Scholar
  67. 67.
    Overhage J, Campisano A, Bains M, Torfs ECW, Rehm BHA, Hancock REW. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun. 2008;76(9):4176–82.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Chennupati SK, Chiu AG, Tamashiro E, Banks CA, Cohen MB, Bleier BS, et al. Effects of an LL-37-derived antimicrobial peptide in an animal model of biofilm Pseudomonas sinusitis. Am J Rhinol Allergy. 2009;23(1):46–51.PubMedGoogle Scholar
  69. 69.
    Dean SN, Bishop BM, van Hoek ML. Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm activity against Staphylococcus aureus. BMC Microbiol. 2011;11(1):1.Google Scholar
  70. 70.
    Felgentreff K, Beisswenger C, Griese M, Gulder T, Bringmann G, Bals R. The antimicrobial peptide cathelicidin interacts with airway mucus. Peptides. 2006;27(12):3100–6.  https://doi.org/10.1016/j.peptides.2006.07.018.PubMedGoogle Scholar
  71. 71.
    Olsen K, Falch BM, Danielsen K, Johannessen M, Ericson Sollid JU, Thune I, et al. Staphylococcus aureus nasal carriage is associated with serum 25-hydroxyvitamin D levels, gender and smoking status. The Tromsø staph and skin study. Eur J Clin Microbiol Infect Dis. 2012;31(4):465–73.PubMedGoogle Scholar
  72. 72.
    Kanhere M, He J, Chassaing B, Ziegler TR, Alvarez JA, Ivie EA, et al. Bolus weekly vitamin D3 supplementation impacts gut and airway microbiota in adults with cystic fibrosis: a double-blind, randomized, placebo-controlled clinical trial. J Clin Endocrinol Metab. 2017;103(2):564–74.PubMedCentralGoogle Scholar
  73. 73.
    Jin D, Wu S, Zhang Y-g, Lu R, Xia Y, Dong H, et al. Lack of vitamin D receptor causes dysbiosis and changes the functions of the murine intestinal microbiome. Clin Ther. 2015;37(5):996–1009.PubMedGoogle Scholar
  74. 74.
    Wu S, Zhang Y-G, Lu R, Xia Y, Zhou D, Petrof EO, et al. Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis. Gut. 2015;64(7):1082–94.PubMedGoogle Scholar
  75. 75.
    Wang J, Thingholm LB, Skiecevičienė J, Rausch P, Kummen M, Hov JR, et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat Genet. 2016;48(11):1396–406.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Lappan R, Imbrogno K, Sikazwe C, Anderson D, Mok D, Coates H, et al. A microbiome case-control study of recurrent acute otitis media identified potentially protective bacterial genera. BMC Microbiol. 2018;18(1):13.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Roditi RE, Veling M, Shin JJ. Age: an effect modifier of the association between allergic rhinitis and otitis media with effusion. Laryngoscope. 2016;126(7):1687–92.  https://doi.org/10.1002/lary.25682.PubMedGoogle Scholar
  78. 78.
    Wright ED, Hurst D, Miotto D, Giguere C, Hamid Q. Increased expression of major basic protein (MBP) and interleukin-5 (IL-5) in middle ear biopsy specimens from atopic patients with persistent otitis media with effusion. Otolaryngol Head Neck Surg. 2000;123(5):533–8.PubMedGoogle Scholar
  79. 79.
    Wren JT, Blevins LK, Pang B, King LB, Perez AC, Murrah KA, et al. Influenza a virus alters pneumococcal nasal colonization and middle ear infection independently of phase variation. Infect Immun. 2014;82(11):4802–12.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Marks LR, Davidson BA, Knight PR, Hakansson AP. Interkingdom signaling induces Streptococcus pneumoniae biofilm dispersion and transition from asymptomatic colonization to disease. mBio. 2013;4(4):e00438–13.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Urashima M, Segawa T, Okazaki M, Kurihara M, Wada Y, Ida H. Randomized trial of vitamin D supplementation to prevent seasonal influenza a in schoolchildren. Am J Clin Nutr. 2010;91(5):1255–60.PubMedGoogle Scholar
  82. 82.
    Brockman-Schneider RA, Pickles RJ, Gern JE. Effects of vitamin D on airway epithelial cell morphology and rhinovirus replication. PLoS One. 2014;9(1):e86755.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Telcian AG, Zdrenghea MT, Edwards MR, Laza-Stanca V, Mallia P, Johnston SL, et al. Vitamin D increases the antiviral activity of bronchial epithelial cells in vitro. Antivir Res. 2017;137:93–101.  https://doi.org/10.1016/j.antiviral.2016.11.004.PubMedGoogle Scholar
  84. 84.
    Hansdottir S, Monick MM, Lovan N, Powers L, Gerke A, Hunninghake GW. Vitamin D decreases respiratory syncytial virus induction of NF-kB linked chemokines and cytokines in airway epithelium while maintaining the antiviral state. J Immunol. 2010;184(2):965–74.PubMedGoogle Scholar
  85. 85.
    Zhang Y, Leung DYM, Richers BN, Liu Y, Remigio LK, Riches DW, et al. Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. J Immunol. 2012;188(5):2127–35.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Zhu Y, Mahon BD, Froicu M, Cantorna MT. Calcium and 1α, 25-dihydroxyvitamin D3 target the TNF-α pathway to suppress experimental inflammatory bowel disease. Eur J Immunol. 2005;35(1):217–24.PubMedGoogle Scholar
  87. 87.
    Coussens AK, Wilkinson RJ, Hanifa Y, Nikolayevskyy V, Elkington PT, Islam K, et al. Vitamin D accelerates resolution of inflammatory responses during tuberculosis treatment. Proc Natl Acad Sci. 2012;109(38):15449–54.PubMedGoogle Scholar
  88. 88.
    Preciado D, Lin J, Wuertz B, Rose M. Cigarette smoke activates NFκB and induces Muc5b expression in mouse middle ear cells. Laryngoscope. 2008;118(3):464–71.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Preciado D, Kuo E, Ashktorab S, Manes P, Rose M. Cigarette smoke activates NFκB-mediated Tnf-α release from mouse middle ear cells. Laryngoscope. 2010;120(12):2508–15.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Kim H-B, Lim SH, Cho CG, Choi HS. Influence of vitamin D deficiency on progression of experimental otitis media in rats. Endocrinol Metab. 2018;33(2):296–304.Google Scholar
  91. 91.
    Lai G, Wu C, Hong J, Song Y. 1, 25-Dihydroxyvitamin D3 (1, 25-(OH) 2D3) attenuates airway remodeling in a murine model of chronic asthma. J Asthma. 2013;50(2):133–40.PubMedGoogle Scholar
  92. 92.
    Reid D, Toole BJ, Knox S, Talwar D, Harten J, O’Reilly DSJ, et al. The relation between acute changes in the systemic inflammatory response and plasma 25-hydroxyvitamin D concentrations after elective knee arthroplasty. Am J Clin Nutr. 2011;93(5):1006–11.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Rebecca E. Walker
    • 1
    Email author
  • Jim Bartley
    • 2
  • Carlos A. CamargoJr
    • 3
  • Edwin A. Mitchell
    • 1
  1. 1.Department of Paediatrics: Child and Youth HealthThe University of AucklandAucklandNew Zealand
  2. 2.Division of Otolaryngology-Head and Neck SurgeryCounties-Manukau District Health BoardAucklandNew Zealand
  3. 3.Department of Emergency Medicine and Division of Rheumatology, Allergy, and Immunology, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations