Emerging Therapeutics for Ocular Surface Disease

  • Leonard Bielory
  • Dovid Schoenberg
Rhinitis, Conjunctivitis, and Sinusitis (John J. Oppenheimer & Jonathan Corren, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Rhinitis, Conjunctivitis, and Sinusitis


Purpose of Review

The purpose of this article is to review treatment advances in ocular allergy that include the treatment of the various signs and symptoms of the allergic inflammatory response of the ocular surface.

Recent Findings

Recent studies have demonstrated improved pharmacological effect of topical agents with artificial tears and cold compresses; brimonidine, a new ophthalmic decongestant which has demonstrated decreased rebound conjunctivitis; and potential use of contact lens and other novel delivery instruments to increase medication retention time.


Currently, there have been limited advances in novel ophthalmic treatments. Non-pharmacological interventions have demonstrated in a randomized control study that artificial tears and the use cold compresses alone or in combination with ophthalmic antihistamines can enhance the effectiveness of a traditional pharmacological therapy. The primary advances have been the start of head-to-head studies comparing various agents actively being used in the treatment of ocular allergy. In addition, there has been increasing interest in the development of novel delivery systems to increase residence time of pharmacological agents in the ocular surface such as nanoparticles, microfilms; examining novel pathways of controlling the allergic inflammatory response of the ocular surface such as modulation of cytokines, transcription factors, and immunophilins.


Ocular surface disease Ophthalmic decongestant Ocular allergy Conjunctivitis Allergic inflammation Allergic conjunctivitis Pharmacotherapy Contact lenses Non-pharmacological treatments Lubrication 


Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflicts of interest pertaining to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of major importance •• Of major importance

  1. 1.
    Origlieri C, Bielory L. Emerging drugs for conjunctivitis. Expert Opin Emerg Drugs. 2009;14:523–36.CrossRefGoogle Scholar
  2. 2.
    Butrus S, Portela R. Ocular allergy: diagnosis and treatment. Ophthalmol Clin N Am. 2005;18:485–92 v.Google Scholar
  3. 3.
    Singh K, Axelrod S, Bielory L. The epidemiology of ocular and nasal allergy in the United States, 1988-1994. J Allergy Clin Immunol. 2010;126:778–83 e776.CrossRefGoogle Scholar
  4. 4.
    Sacchetti M, Abicca I, Bruscolini A, Cavaliere C, Nebbioso M, Lambiase A. Allergic conjunctivitis: current concepts on pathogenesis and management. J Biol Regul Homeost Agents. 2018;32:49–60.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Bielory L, Meltzer EO, Nichols KK, Melton R, Thomas RK, Bartlett JD. An algorithm for the management of allergic conjunctivitis. Allergy Asthma Proc. 2013;34:408–20.CrossRefGoogle Scholar
  6. 6.
    •• Bilkhu PS, Wolffsohn JS, Naroo SA, Robertson L, Kennedy R. Effectiveness of nonpharmacologic treatments for acute seasonal allergic conjunctivitis. Ophthalmology. 2014;121:72–8 Sheds light on effectiveness of cold compresses and lubricant based treatments with or without a topical pharmacological agent. CrossRefGoogle Scholar
  7. 7.
    Abelson MB, Paradis A, George MA, Smith LM, Maguire L, Burns R. Effects of Vasocon-A in the allergen challenge model of acute allergic conjunctivitis. Arch Ophthalmol. 1990;108:520–4.CrossRefGoogle Scholar
  8. 8.
    Spector SL, Raizman MB. Conjunctivitis medicamentosa. J Allergy Clin Immunol. 1994;94:134–6.CrossRefGoogle Scholar
  9. 9.
    •• McLaurin E, Cavet ME, Gomes PJ, Ciolino JB. Brimonidine ophthalmic solution 0.025% for reduction of ocular redness: a randomized clinical trial. Optom Vis Sci. 2018;95:264–71 A potential ophthalmic decongestant showing minimal rebound phenomena of the ocular surface when used over 4 weeks. CrossRefGoogle Scholar
  10. 10.
    Torkildsen GL, Sanfilippo CM, DeCory HH, Gomes PJ. Evaluation of efficacy and safety of brimonidine tartrate ophthalmic solution, 0.025% for treatment of ocular redness. Curr Eye Res. 2018;43:43–51.CrossRefGoogle Scholar
  11. 11.
    Rathi VM, Taneja M, Dumpati S, Mandathara PS, Sangwan VS. Role of scleral contact lenses in management of coexisting keratoconus and Stevens-Johnson syndrome. Cornea. 2017;36:1267–9.Google Scholar
  12. 12.
    Lemp MA, Bielory L. Contact lenses and associated anterior segment disorders: dry eye disease, blepharitis, and allergy. Immunol Allergy Clin N Am. 2008;28:105–17 vi-vii.CrossRefGoogle Scholar
  13. 13.
    •• Gause S, Hsu KH, Shafor C, Dixon P, Powell KC, Chauhan A. Mechanistic modeling of ophthalmic drug delivery to the anterior chamber by eye drops and contact lenses. Adv Colloid Interf Sci. 2016;233:139–54 Novel drug delivery system. CrossRefGoogle Scholar
  14. 14.
    Gonzalez-Chomon C, Silva M, Concheiro A, Alvarez-Lorenzo C. Biomimetic contact lenses eluting olopatadine for allergic conjunctivitis. Acta Biomater. 2016;41:302–11.CrossRefGoogle Scholar
  15. 15.
    Soluri A, Hui A, Jones L. Delivery of ketotifen fumarate by commercial contact lens materials. Optom Vis Sci. 2012;89:1140–9.CrossRefGoogle Scholar
  16. 16.
    Phan CM, Weber S, Mueller J, Yee A, Jones L. A rapid extraction method to quantify drug uptake in contact lenses. Transl Vis Sci Technol. 2018;7:11.CrossRefGoogle Scholar
  17. 17.
    Fahy GT, Easty DL, Collum LM, Benedict-Smith A, Hillery M, Parsons DG. Randomised double-masked trial of lodoxamide and sodium cromoglycate in allergic eye disease. A multicentre study. Eur J Ophthalmol. 1992;2:144–9.CrossRefGoogle Scholar
  18. 18.
    Avunduk AM, Avunduk MC, Kapicioglu Z, Akyol N, Tavli L. Mechanisms and comparison of anti-allergic efficacy of topical lodoxamide and cromolyn sodium treatment in vernal keratoconjunctivitis. Ophthalmology. 2000;107:1333–7.CrossRefGoogle Scholar
  19. 19.
    Katelaris CH, Ciprandi G, Missotten L, Turner FD, Bertin D, Berdeaux G, et al. A comparison of the efficacy and tolerability of olopatadine hydrochloride 0.1% ophthalmic solution and cromolyn sodium 2% ophthalmic solution in seasonal allergic conjunctivitis. Clin Ther. 2002;24:1561–75.CrossRefGoogle Scholar
  20. 20.
    Patel D, Sarala N, Datti NP. Topical olopatadine hydrochloride versus ketotifen fumarate for allergic conjunctivitis. J Ophthalmic Vis Res. 2018;13:119–23.CrossRefGoogle Scholar
  21. 21.
    Aguilar AJ. Comparative study of clinical efficacy and tolerance in seasonal allergic conjunctivitis management with 0.1% olopatadine hydrochloride versus 0.05% ketotifen fumarate. Acta Ophthalmol Scand Suppl. 2000:52–5.Google Scholar
  22. 22.
    Avunduk AM, Tekelioglu Y, Turk A, Akyol N. Comparison of the effects of ketotifen fumarate 0.025% and olopatadine HCl 0.1% ophthalmic solutions in seasonal allergic conjunctivities: a 30-day, randomized, double-masked, artificial tear substitute-controlled trial. Clin Ther. 2005;27:1392–402.CrossRefGoogle Scholar
  23. 23.
    Lanier BQ, Finegold I, D'Arienzo P, Granet D, Epstein AB, Ledgerwood GL. Clinical efficacy of olopatadine vs epinastine ophthalmic solution in the conjunctival allergen challenge model. Curr Med Res Opin. 2004;20:1227–33.CrossRefGoogle Scholar
  24. 24.
    Mah FS, Rosenwasser LJ, Townsend WD, Greiner JV, Bensch G. Efficacy and comfort of olopatadine 0.2% versus epinastine 0.05% ophthalmic solution for treating itching and redness induced by conjunctival allergen challenge. Curr Med Res Opin. 2007;23:1445–52.CrossRefGoogle Scholar
  25. 25.
    Mizoguchi T, Ozaki M, Ogino N. Efficacy of 0.05% epinastine and 0.1% olopatadine for allergic conjunctivitis as seasonal and preseasonal treatment. Clin Ophthalmol. 2017;11:1747–53.CrossRefGoogle Scholar
  26. 26.
    Berdy GJ, Stoppel JO, Epstein AB. Comparison of the clinical efficacy and tolerability of olopatadine hydrochloride 0.1% ophthalmic solution and loteprednol etabonate 0.2% ophthalmic suspension in the conjunctival allergen challenge model. Clin Ther. 2002;24:918–29.CrossRefGoogle Scholar
  27. 27.
    Gong L, Sun X, Qu J, Wang L, Zhang M, Zhang H, et al. Loteprednol etabonate suspension 0.2% administered QID compared with olopatadine solution 0.1% administered BID in the treatment of seasonal allergic conjunctivitis: a multicenter, randomized, investigator-masked, parallel group study in Chinese patients. Clin Ther. 2012;34:1259–72 e1251.CrossRefGoogle Scholar
  28. 28.
    Celik T, Turkoglu EB. Comparative evaluation of olopatadine 0.01% combined fluorometholone 0.1% treatment versus olopatadine 0.01% combined ketorolac 0.4% treatment in patients with acute seasonal allergic conjunctivitis. Curr Eye Res. 2014;39:42–6.CrossRefGoogle Scholar
  29. 29.
    Yaylali V, Demirlenk I, Tatlipinar S, Ozbay D, Esme A, Yildirim C, et al. Comparative study of 0.1% olopatadine hydrochloride and 0.5% ketorolac tromethamine in the treatment of seasonal allergic conjunctivitis. Acta Ophthalmol Scand. 2003;81:378–82.CrossRefGoogle Scholar
  30. 30.
    McLaurin EB, Marsico NP, Ackerman SL, Ciolino JB, Williams JM, Villanueva L, et al. Ocular itch relief with alcaftadine 0.25% versus olopatadine 0.2% in allergic conjunctivitis: pooled analysis of two multicenter randomized clinical trials. Adv Ther. 2014;31:1059–71.CrossRefGoogle Scholar
  31. 31.
    Borazan M, Karalezli A, Akova YA, Akman A, Kiyici H, Erbek SS. Efficacy of olopatadine HCI 0.1%, ketotifen fumarate 0.025%, epinastine HCI 0.05%, emedastine 0.05% and fluorometholone acetate 0.1% ophthalmic solutions for seasonal allergic conjunctivitis: a placebo-controlled environmental trial. Acta Ophthalmol. 2009;87:549–54.CrossRefGoogle Scholar
  32. 32.
    McCabe CF, McCabe SE. Comparative efficacy of bepotastine besilate 1.5% ophthalmic solution versus olopatadine hydrochloride 0.2% ophthalmic solution evaluated by patient preference. Clin Ophthalmol. 2012;6:1731–8.CrossRefGoogle Scholar
  33. 33.
    Secchi A, Leonardi A, Discepola M, Deschenes J, Abelson MB. An efficacy and tolerance comparison of emedastine difumarate 0.05% and levocabastine hydrochloride 0.05%: reducing chemosis and eyelid swelling in subjects with seasonal allergic conjunctivitis. Emadine Study Group. Acta Ophthalmol Scand Suppl. 2000:48–51.Google Scholar
  34. 34.
    Secchi A, Ciprandi G, Leonardi A, Deschenes J, Abelson MB. Safety and efficacy comparison of emedastine 0.05% ophthalmic solution compared to levocabastine 0.05% ophthalmic suspension in pediatric subjects with allergic conjunctivitis. Emadine Study Group. Acta Ophthalmol Scand Suppl. 2000:42–7.Google Scholar
  35. 35.
    McLaurin E, Narvekar A, Gomes P, Adewale A, Torkildsen G. Phase 3 randomized double-masked study of efficacy and safety of once-daily 0.77% olopatadine hydrochloride ophthalmic solution in subjects with allergic conjunctivitis using the conjunctival allergen challenge model. Cornea. 2015;34:1245–51.CrossRefGoogle Scholar
  36. 36.
    Wan XC, Dimov V. Pharmacokinetic evaluation of topical calcineurin inhibitors for treatment of allergic conjunctivitis. Expert Opin Drug Metab Toxicol. 2014;10:543–9.CrossRefGoogle Scholar
  37. 37.
    Liendo VL, Vola ME, Barreiro TP, Wakamatsu TH, Gomes JAP, Santos MSD. Topical tacrolimus for the treatment of severe allergic keratoconjunctivitis in children. Arq Bras Oftalmol. 2017;80:211–4.CrossRefGoogle Scholar
  38. 38.
    Zulim L, Nai GA, Giuffrida R, Pereira CSG, Benguella H, Cruz AG, et al. Comparison of the efficacy of 0.03% tacrolimus eye drops diluted in olive oil and linseed oil for the treatment of keratoconjunctivitis sicca in dogs. Arq Bras Oftalmol. 2018;81:293–301.CrossRefGoogle Scholar
  39. 39.
    Liu YC, Ng XW, Teo EPW, Ang HP, Lwin NC, Chan NSW, et al. A biodegradable, sustained-released, tacrolimus microfilm drug delivery system for the management of allergic conjunctivitis in a mouse model. Invest Ophthalmol Vis Sci. 2018;59:675–84.CrossRefGoogle Scholar
  40. 40.
    Yoon CH, Kim MK, Oh JY. Topical tacrolimus 0.03% for maintenance therapy in steroid-dependent, recurrent phlyctenular keratoconjunctivitis. Cornea. 2018;37:168–71.CrossRefGoogle Scholar
  41. 41.
    Wan Q, Tang J, Han Y, Wang D, Ye H. Therapeutic effect of 0.1% tacrolimus eye drops in the tarsal form of vernal keratoconjunctivitis. Ophthalmic Res. 2018;59:126–34.CrossRefGoogle Scholar
  42. 42.
    Muller EG, Santos MSD, Freitas D, Gomes JAP, Belfort R Jr. Tacrolimus eye drops as monotherapy for vernal keratoconjunctivitis: a randomized controlled trial. Arq Bras Oftalmol. 2017;80:154–8.CrossRefGoogle Scholar
  43. 43.
    Zanjani H, Aminifard MN, Ghafourian A, Pourazizi M, Maleki A, Arish M, et al. Comparative evaluation of tacrolimus versus interferon alpha-2b eye drops in the treatment of vernal keratoconjunctivitis: a randomized, double-masked study. Cornea. 2017;36:675–8.CrossRefGoogle Scholar
  44. 44.
    Miyazaki D, Fukushima A, Ohashi Y, Ebihara N, Uchio E, Okamoto S, et al. Steroid-sparing effect of 0.1% tacrolimus eye drop for treatment of shield ulcer and corneal epitheliopathy in refractory allergic ocular diseases. Ophthalmology. 2017;124:287–94.CrossRefGoogle Scholar
  45. 45.
    Kato M, Hagiwara Y, Oda T, Imamura-Takai M, Aono H, Nakamura M. Beneficial pharmacological effects of selective glucocorticoid receptor agonist in external eye diseases. J Ocul Pharmacol Ther. 2011;27:353–60.CrossRefGoogle Scholar
  46. 46.
    Ripa L, Edman K, Dearman M, Edenro G, Hendrickx R, Ullah V, et al. Discovery of a novel oral glucocorticoid receptor modulator (AZD9567) with improved side effect profile. J Med Chem. 2018;61:1785–99.CrossRefGoogle Scholar
  47. 47.
    Baiula M, Bedini A, Baldi J, Cavet ME, Govoni P, Spampinato S. Mapracorat, a selective glucocorticoid receptor agonist, causes apoptosis of eosinophils infiltrating the conjunctiva in late-phase experimental ocular allergy. Drug Des Devel Ther. 2014;8:745–57.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Shafiee A, Bucolo C, Budzynski E, Ward KW, Lopez FJ. In vivo ocular efficacy profile of mapracorat, a novel selective glucocorticoid receptor agonist, in rabbit models of ocular disease. Invest Ophthalmol Vis Sci. 2011;52:1422–30.CrossRefGoogle Scholar
  49. 49.
    Baiula M, Spampinato S. Mapracorat, a novel non-steroidal selective glucocorticoid receptor agonist for the treatment of allergic conjunctivitis. Inflamm Allergy Drug Targets. 2014;13:289–98.CrossRefGoogle Scholar
  50. 50.
    de Klerk TA, Sharma V, Arkwright PD, Biswas S. Severe vernal keratoconjunctivitis successfully treated with subcutaneous omalizumab. J AAPOS. 2013;17:305–6.CrossRefGoogle Scholar
  51. 51.
    Sanchez J, Cardona R. Omalizumab. An option in vernal keratoconjunctivitis? Allergol Immunopathol (Madr). 2012;40:319–20.CrossRefGoogle Scholar
  52. 52.
    Taille C, Doan S, Neukirch C, Aubier M. Omalizumab for severe atopic keratoconjunctivitis. BMJ Case Rep. 2010;2010.Google Scholar
  53. 53.
    Simpson R, Lee JK. Omalizumab as single-dose therapy for vernal keratoconjunctivitis. Ann Allergy Asthma Immunol. 2018.Google Scholar
  54. 54.
    Santamaria L, Sanchez J. Long-term efficacy of omalizumab in patients with conventional treatment-resistant vernal keratoconjunctivitis. Rev Alerg Mex. 2018;65:192–6.Google Scholar
  55. 55.
    Occasi F, Duse M, Nebbioso M, De Castro G, Di Fraia M, Capata G, et al. Vernal keratoconjunctivitis treated with omalizumab: a case series. Pediatr Allergy Immunol. 2017;28:503–5.CrossRefGoogle Scholar
  56. 56.
    Heffler E, Picardi G, Liuzzo MT, Pistorio MP, Crimi N. Omalizumab treatment of vernal keratoconjunctivitis. JAMA Ophthalmol. 2016;134:461–3.CrossRefGoogle Scholar
  57. 57.
    Bielory BP, Shah SP, O'Brien TP, Perez VL, Bielory L. Emerging therapeutics for ocular surface disease. Curr Opin Allergy Clin Immunol. 2016;16:477–86.CrossRefGoogle Scholar
  58. 58.
    Soltani S, Zakeri-Milani P, Barzegar-Jalali M, Jelvehgari M. Comparison of different nanosuspensions as potential ophthalmic delivery systems for ketotifen fumarate. Adv Pharm Bull. 2016;6:345–52.CrossRefGoogle Scholar
  59. 59.
    •• Soltani S, Zakeri-Milani P, Barzegar-Jalali M, Jelvehgari M. Design of eudragit RL nanoparticles by nanoemulsion method as carriers for ophthalmic drug delivery of ketotifen fumarate. Iran J Basic Med Sci. 2016;19:550–60 Novel drug formulation. PubMedPubMedCentralGoogle Scholar
  60. 60.
    Pham DL, Lim KM, Joo KM, Park HS, Leung DYM, Ye YM. Increased cis-to-trans urocanic acid ratio in the skin of chronic spontaneous urticaria patients. Sci Rep. 2017;7:1318.CrossRefGoogle Scholar
  61. 61.
    Jauhonen HM, Laihia J, Oksala O, Viiri J, Sironen R, Alajuuma P, et al. Topical cis-urocanic acid prevents ocular surface irritation in both IgE—independent and—mediated rat model. Graefes Arch Clin Exp Ophthalmol. 2017;255:2357–62.CrossRefGoogle Scholar
  62. 62.
    Jauhonen HM, Kari E, Pylkkanen L, Poutanen J, Laihia J, Kaarniranta K, et al. A randomized phase I clinical study of cis-urocanic acid eye drops in healthy adult subjects. Acta Ophthalmol. 2015;93:368–76.CrossRefGoogle Scholar
  63. 63.
    • Dattoli SD, Baiula M, De Marco R, Bedini A, Anselmi M, Gentilucci L, et al. DS-70, a novel and potent alpha4 integrin antagonist, is an effective treatment for experimental allergic conjunctivitis in guinea pigs. Br J Pharmacol. 2018;175:3891–910 Novel focus on conjunctival surface adhesion molecules to decrease allergic inflammation of the ocular surface. CrossRefGoogle Scholar
  64. 64.
    Guzman M, Sabbione F, Gabelloni ML, Vanzulli S, Trevani AS, Giordano MN, et al. Restoring conjunctival tolerance by topical nuclear factor-kappaB inhibitors reduces preservative-facilitated allergic conjunctivitis in mice. Invest Ophthalmol Vis Sci. 2014;55:6116–26.CrossRefGoogle Scholar
  65. 65.
    Lee HS, Kwon JY, Joo CK. Topical administration of beta-1,3-glucan to modulate allergic conjunctivitis in a murine model. Invest Ophthalmol Vis Sci. 2016;57:1352–60.CrossRefGoogle Scholar
  66. 66.
    Kwon JY, Lee HS, Joo CK. TRPV1 antagonist suppresses allergic conjunctivitis in a murine model. Ocul Immunol Inflamm. 2018;26:440–8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Leonard Bielory
    • 1
    • 2
    • 3
    • 4
  • Dovid Schoenberg
    • 5
  1. 1.Department of Medicine and OphthalmologyHackensack Meridian School of Medicine at Seton Hall UniversityNutleyUSA
  2. 2.Department of MedicineThomas Jefferson University Sidney Kimmel School of MedicinePhiladelphiaUSA
  3. 3.Rutgers University Center of Environmental PredictionNew BrunswickUSA
  4. 4.SpringfieldUSA
  5. 5.Yeshiva UniversityNew YorkUSA

Personalised recommendations