Vehicle atmospheric pollution evaluation using AERMOD model at avenue in a Brazilian capital city

  • Maíra Feitosa Menezes MacêdoEmail author
  • André Luis Dantas Ramos


One of the most complex environmental problems is the air pollution, and automotive vehicles are one of the main sources of urban air pollution. Aracaju-SE, Sergipe’s capital in the northeast of Brazil, faces frequent congestion in traffic and does not have a monitoring network of air quality, so mathematical models are useful for impact assessment. This work consisted of an unusual application of AERMOD View software for vehicular pollution evaluation at Tancredo Neves Avenue in Aracaju’s city. The modeling was performed for the two avenue tracks, considered as urban linear sources. The rate of emission source was calculated from emission factors, average speed, and the number of vehicles accounted for footage circulating on the promenade at peak times. Concentrations distributions of total suspended particles (TSP), carbon monoxide (CO), and nitrogen oxide (NOx) on the mesh receptors were determinated from weather, topographic, and sources of emission data. The dispersion maps showed that the pollutants were concentrated around the sources; the estimated TSP concentrations were within the standards of CONAMA 491/2018 law. The CO concentration values exceeded the standard due to the high rate of emission sources. NO2 concentrations also exceeded the standard for hourly average, attributed to the contribution of heavy vehicles and the emission rates of light vehicles and motorcycles. The simulations showed that the meteorological and topographical conditions of Aracaju favor the atmospheric pollutants dispersion, that vehicles significantly affect air quality in the region and that the mathematical modeling is a useful tool for the study of atmospheric dispersion.


Air quality Vehicle pollution Atmospheric dispersion Carbon monoxide Nitrogen oxide Particulate matter 



The authors want to thank the “Ambientec Consultoria Ambiental LTDA.” for the disponibility of the AERMOD View software license.


  1. Almeida TS, Santana MO, Cruz JM, Tormen L, Lúcia V, Frescura A, Nan B, Azevedo PA, Alexandre C, Garcia B, Do JE, Alves PH, Araujo RGO (2017) Characterisation and source identification of the total airborne particulate matter collected in an urban area of Aracaju, northeast, Brazil. Environ Pollut 226:444–451. CrossRefGoogle Scholar
  2. ANTP, Associação Nacional de Transportes Públicos (2015) Avaliando a qualidade da mobilidade urbana: aplicação de metodologia experimental. Série Cad Técnicos 23Google Scholar
  3. ARACAJU (2017) Aspectos Geográficos [WWW Document]. Prefeitura de Aracaju. URL (accessed 1.26.18)
  4. Baldasano JM, Massagué J (2017) Trends and patterns of air quality in Santa Cruz de Tenerife (Canary Islands) in the period 2011-2015. Air Qual Atmos Health 10:939–954. CrossRefGoogle Scholar
  5. Barbon A, Gomes J (2010) Simulation of atmospheric emissions over Araucaria municipality using the AERMOD model. Eng Sanitária e Ambient 15:129–140CrossRefGoogle Scholar
  6. Bertin M, Chevrier C, Serrano T, Monfort C, Rouget F, Cordier S, Viel JF (2015) Association between prenatal exposure to traffic-related air pollution and preterm birth in the PELAGIE mother-child cohort, Brittany, France. Does the urban-rural context matter? Environ Res 142:17–24. CrossRefGoogle Scholar
  7. BRASIL (2018) RESOLUÇÃO CONAMA 491 DE 19 DE NOVEMBRO DE 2018 [WWW Document]. Cons Nac Meio Ambient. D.O.U. 21 nov. 2018, 1:155–156, Brasília, DF. URL (accessed 5.16.19)
  8. BRASIL (2019) Qualidade do Ar [WWW Document]. Ministério do Meio Ambient Bras. URL (accessed 5.16.19)
  9. CETESB (São Paulo) (2015) Emissões veiculares no estado de São Paulo 2014 [recurso eletrônico]. Série Relatórios, São PauloGoogle Scholar
  10. Costa LG, Cole TB, Coburn J, Chang YC, Dao K, Roqué PJ (2017) Neurotoxicity of traffic-related air pollution. Neurotoxicology 59:133–139. CrossRefGoogle Scholar
  11. DETRAN-SE (2019) Estatísticas - Frotas de veículo por município e espécie (anual) [WWW Document]. Dep. Estadual Trânsito Sergipe, Sergipe, 2018. URL (accessed 5.16.19)
  12. Duque L, Relvas H, Silveira C, Ferreira J, Monteiro A, Gama C, Rafael S, Freitas S, Borrego C, Miranda AI (2016) Evaluating strategies to reduce urban air pollution. Atmos Environ 127:196–204. CrossRefGoogle Scholar
  13. EPA-USA, US Environmental Protection Agency (2003) Particle pollution and your health [WWW Document]. EPA-452/F-03-001. URL (accessed 5.27.18)
  14. EPA-USA, US Environmental Protection Agency (2004) Aermod: description of model formulation. Res Triangle Park, North Carolina, 2004Google Scholar
  15. EPA-USA, US Environmental Protection Agency (2005) 40 CFR part 51 revision to the guideline on air quality models adoption of a preferred general purpose (flat and complex terrain), dispersion model and other revisions; final rule. Fed Regist United States 70:68218–68261Google Scholar
  16. EPA-USA, US Environmental Protection Agency (2015) Aermod implementation guide. Res Triangle Park, North Carolina, 2004Google Scholar
  17. Gibson MD, Kundu S, Satish M (2013) Dispersion model evaluation of PM2.5, NOx and SO2 from point and major line sources in Nova Scotia, Canada using AERMOD Gaussian plume air dispersion model. Atmos Pollut Res 4:157–167. CrossRefGoogle Scholar
  18. GOOGLE MAPS (2016) Rout of Av. Beira Mar, 1383–1501 - Farolândia, Aracaju - SE to Av. Beira Mar, 3815 - Farolândia, Aracaju - SE - Google Maps [WWW Document]. URL,-37.0537628/−10.9571061,-37.0537299/@-10.9651665,-37.0626931,15z/data=!4m5!4m4!2m2!7e2!8j1461569340!3e0 (accessed 5.11.16)
  19. Heist D, Isakov V, Perry S, Snyder M, Venkatram A, Hood C, Stocker J, Carruthers D, Arunachalam S, Owen RC (2013) Estimating near-road pollutant dispersion: a model inter-comparison. Transp Res Part D 25:93–105. CrossRefGoogle Scholar
  20. Holmes NS, Morawska L (2006) A review of dispersion modelling and its application to the dispersion of particles: an overview of different dispersion models available. Atmos Environ 40:5902–5928. CrossRefGoogle Scholar
  21. Khodakarami J, Ghobadi P (2016) Urban pollution and solar radiation impacts. Renew Sust Energ Rev 57:965–976. CrossRefGoogle Scholar
  22. Kimbrough S, Owen RC, Snyder M, Richmond-Bryant J (2017) NO to NO2 conversion rate analysis and implications for dispersion model chemistry methods using Las Vegas, Nevada near-road field measurements. Atmos Environ 165:23–34. CrossRefGoogle Scholar
  23. Kumar A, Patil RS, Dikshit AK, Kumar R (2016) Comparison of predicted vehicular pollution concentration with air quality standards for different time periods. Clean Techn Environ Policy 18:2293–2303. CrossRefGoogle Scholar
  24. Lakes Environmental (2018). Software AERMOD View 6.8.6Google Scholar
  25. Macedo RL (2012) Qualidade do ar em Campo Grande/MS: Estudo das Emissões por fontes móveis e sua dispersão. Dissertação (Mestrado em Tecnologias Ambientais) – Programa de Pós-graduação em Tecnologias Ambientais, Universidade Federal de Mato Grosso do Sul, Campo Grande - MSGoogle Scholar
  26. Malik A, Tauler R (2015) Exploring the interaction between O3and NOx pollution patterns in the atmosphere of Barcelona, Spain using the MCR-ALS method. Sci Total Environ 517:151–161. CrossRefGoogle Scholar
  27. Miranda RM, Andrade MF, Fornaro A, Astolfo R, Andre PA, Saldiva P (2012) Urban air pollution: a representative survey of PM2.5 mass concentrations insix Brazilian cities. Air Qual Atmos Health 5:63–77. CrossRefGoogle Scholar
  28. Richmond-Bryant J, Snyder MG, Owen RC, Kimbrough S (2018) Factors associated with NO2 and NOX concentration gradients near a highway. Atmos Environ 174:214–226. CrossRefGoogle Scholar
  29. Robichaud A, Comtois P (2019) Environmental factors and asthma hospitalization in Montreal, Canada, during spring 2006-2008: a synergy perspective. Air Qual Atmos Health 12:1495–1509. CrossRefGoogle Scholar
  30. Seangkiatiyuth K, Surapipith V, Tantrakarnapa K, Lothongkum AW (2011) Application of the AERMOD modeling system for environmental impact assessment of NO2 emissions from a cement complex. J Environ Sci 23:931–940. CrossRefGoogle Scholar
  31. Silva RF, Araújo JHB, Teixeira GG, Meira GRN (2014) Diagnóstico das Emissões atmosféricas de origem veicular na área urbana de Campo Mourão-PR. XX Congresso Bras Eng Química-COBEQ, 2014Google Scholar
  32. Su JG, Apte JS, Lipsitt J, Garcia-Gonzales DA, Beckerman BS, de Nazelle A, Texcalac-Sangrador JL, Jerrett M (2015) Populations potentially exposed to traffic-related air pollution in seven world cities. Environ Int 78:82–89. CrossRefGoogle Scholar
  33. Tartakovsky D, Broday DM, Stern E (2013) Evaluation of AERMOD and CALPUFF for predicting ambient concentrations of total suspended particulate matter (TSP) emissions from a quarry in complex terrain. Environ Pollut 179:138–145. CrossRefGoogle Scholar
  34. Vellingiri K, Kim K-H, Jeon JY, Brown RJC, Jung M-C (2015) Changes in NOx and O3 concentrations over a decade at a central urban area of Seoul, Korea. Atmos Environ 112:116–125. CrossRefGoogle Scholar
  35. Wang W, Chai F, Zhang K, Wang A, Chen Y, Wang X, Yang Y (2008) Study on ambient air quality in Beijing for the summer 2008 Olympic games. Air Qual Atmos Health 1:31–36. CrossRefGoogle Scholar
  36. WORLDATLAS (2019) City populations, largest cities of the world - [WWW document]. WORLDATLAS, 2019. URL (accessed 5.16.19)

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Engenharia e Ciências Ambientais, Centro de Ciências Exatas e TecnologiaUniversidade Federal de Sergipe-UFS, Cidade Universitária Prof. José Aloísio de CamposSão CristóvãoBrazil

Personalised recommendations