Air Quality, Atmosphere & Health

, Volume 12, Issue 2, pp 217–227 | Cite as

Analysis of dust wet deposition in the mid-latitudes of the Northern Hemisphere

  • Zhenxi ZhangEmail author
  • Wen Zhou
  • Liangui Yang


Wet deposition is the efficient removal process for fine dust aerosol. Dust wet deposition in the mid-latitudes of the Northern Hemisphere is investigated in this study by analyzing the dust simulations with the Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model, measurements from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and the meteorological and hydrological fields from Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis. The dust aerosol optical depth (AOD) and dust extinction coefficient from CALIPSO observation and GOCART simulation, in conjunction with the wind field from MERRA, show that the dust plume extending eastward from Asia to Pacific in the mid-latitudes becomes strongest in spring, while Taklamakan, Sahara, and Gobi dust are the main components and distribute vertically in the upper, middle, and lower parts of the dust layer across North Pacific, respectively. The wet deposition of dust in the mid-latitudes is mainly in the large-scale wet removal process, which becomes strongest in spring. The occurrence of wet deposition is accompanied by dust loading or transport. The comparison of wet deposition from GOCART simulation with the cloud water mixing ratio and precipitation production rate from MERRA indicated that wet deposition is mainly related to the water amount in ice cloud, and has a positive relationship with the precipitation in ice cloud layer. On the other hand, over arid and semiarid regions in central and eastern Asia with high dust loading, the absence of cloud water caused by the semidirect effect of dust (Huang et al., Geophys Res Lett 33(19), 2006b), can lower the amount of wet deposition. The comparison of wet deposition from GOCART simulation with the cloud water mixing ratio and vertical pressure velocity from MERRA demonstrates that a large-scale dynamic process, the ascending motion in the subpolar low-pressure system over the North Pacific, can increase the water amount in cloud and cause much more wet deposition of dust, which explains the occurrence of the largest wet deposition over the North Pacific.


Dust aerosol Dust transport Wet deposition Numerical simulation 


Funding information

This work is supported by National Nature Science Foundation of China Grants (41675062, 41375096) and the Research Grants Council of the Hong Kong Special Administrative Region, China (Project Nos. CityU 11306417, 11335316).


  1. Chin M, Ginoux P, Kinne S, Torres O, Holben BN, Duncan BN, Martin R, Logan J, Higurashi A, Nakajima T (2002) Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements. J Atmos Sci 59:461–483CrossRefGoogle Scholar
  2. Chin M, Diehl T, Ginoux P, Malm W (2007) Intercontinental transport of pollution and dust aerosols: implications for regional air quality. Atmos Chem Phys 7(21):5501–5517CrossRefGoogle Scholar
  3. Demott PJ, Kenneth S, Poellot MR, Darrel B, Rogers DC, Brooks SD, Prenni AJ, Kreidenweis SM (2003) African dust aerosols as atmospheric ice nuclei. Geophys Res Lett 30(14):291–305Google Scholar
  4. Fuchs NA (1964) The mechanics of aerosols. Pergamon, Elmsford, New YorkGoogle Scholar
  5. Gao Y, Fan SM, Sarmiento JL (2003) Aeolian iron input to the ocean through precipitation scavenging: a modeling perspective and its implication for natural iron fertilization in the ocean. J Geophys Res 108(D7).
  6. Ginoux P, Chin M, Tegen I, Prospero J, Holben B, Dubovik O, Lin SJ (2001) Sources and distributions of dust aerosols simulated with the GOCART model. J Geophys Res 106:20255–20273. CrossRefGoogle Scholar
  7. Ginoux P, Prospero J, Torres O, Chin M (2004) Long-term simulation of global dust distribution with the GOCART model: correlation with North Atlantic oscillation. Environ Model Softw 19(2):113–128CrossRefGoogle Scholar
  8. Ginoux P, Prospero J, Gill T, Hsu NC, Zhao M (2012) Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS deep blue aerosol products. Rev Geophys 50(3).
  9. Giorgi F, Chameides WL (1986) Rainout lifetimes of highly soluble aerosols and gases as inferred from simulations with a general circulation model. J Geophys Res 91:14367–14376CrossRefGoogle Scholar
  10. Grogan DFP, Nathan TR, Chen SH (2016) Effects of Saharan dust on the linear dynamics of African easterly waves. J Atmos Sci 73(2):891–911CrossRefGoogle Scholar
  11. Hamidi M, Kavianpour MR, Shao Y (2014) Numerical simulation of dust events in the Middle East. Aeolian Res 13:59–70CrossRefGoogle Scholar
  12. Hand JL, Mahowald NM, Chen Y, Siefert RL, Luo C, Subramaniam A, Fung I (2004) Estimates of atmospheric-processed soluble iron from observations and a global mineral aerosol model: biogeochemical implications. J Geophys Res 109(D17):1781–1795. CrossRefGoogle Scholar
  13. Hong CC, Huanghsiung H, Hsinhsing C (2009) A study of east Asian cold surges during the 2004/05 winter: impact of east Asian jet stream and subtropical upper-level Rossby wave trains. Terr Atmos Ocean Sci 20(2):333–343CrossRefGoogle Scholar
  14. Huang J, Minnis P, Lin B, Wang T, Yi Y, Hu Y, Sun MS, Ayers K (2006a) Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES. Geophys Res Lett 33(6):272–288CrossRefGoogle Scholar
  15. Huang J, Lin B, Minnis P, Wang T, Wang X, Hu Y, Yi Y, Ayers K (2006b) Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia. Geophys Res Lett 33(19).
  16. Kaufman YJ, Koren I, Remer LA, Tanré D, Ginoux P, Fan S (2005) Dust transport and deposition observed from the Terra-moderate resolution imaging spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. J Geophys Res 110(D10):575–582CrossRefGoogle Scholar
  17. Lee YC, Wenig M, Zhang ZX, Sugimoto N, Larko D, Diehl T (2011) Dust episodes in Hong Kong (South China) and their relationship with the Sharav and Mongolian cyclones and jet streams. Air Qual Atmos Health 5(4):413–424. CrossRefGoogle Scholar
  18. Liu Z, Omar A, Vaughan M, Hair J, Kittaka C, Hu Y, Powell K, Trepte C, Winker D, Hostetler C, Ferrare R, Pierce R (2008) CALIPSO lidar observations of the optical properties of Saharan dust: a case study of long-range transport. J Geophys Res 113(D7).
  19. Mahowald NM, Baker AR, Bergametti G, Brooks N, Duce RA, Jickells TD, Kubilay N, Prospero JM, Tegen I (2005) Atmospheric global dust cycle and iron inputs to the ocean. Glob Biogeochem Cyles 19(4).
  20. Osada K, Ura S, Kagawa M, Mikami M, Tanaka TY, Matoba S, Aoki K, Shinoda M, Kurosaki Y, Hayashi M, Shimizu A, Uematsu M (2014) Wet and dry deposition of mineral dust particles in Japan: factors related to temporal variation and spatial distribution. Atmos Chem Phys 14(2):1107–1121CrossRefGoogle Scholar
  21. Prospero JM, Landing WM, Schulz M (2010) African dust deposition to Florida: temporal and spatial variability and comparisons to models. J Geophys Res 115(D13).
  22. Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim GK, Bloom S, Chen J, Collins D, Conaty A, Silva AD, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A, Owens T, Pawson S, Pegion P, Redder C, Reichle R, Robertson F, Ruddick A, Sienkiewicz M, Woollen J (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24(14):3624–3648CrossRefGoogle Scholar
  23. Shao Y, Jung E, Leslie LM (2002) Numerical prediction of northeast Asian dust storms using an integrated wind erosion modeling system. J Geophys Res 107(D24):4814–4836. CrossRefGoogle Scholar
  24. Shao Y, Yang Y, Wang J, Song Z, Leslie LM, Dong C, Zhang Z, Lin Z, Kanai Y, Yabuki S, Chun Y (2003) Northeast Asian dust storms: real-time numerical prediction and validation. J Geophys Res 108(D22)Google Scholar
  25. Shao Y, Leys JF, Mctainsh GH, Tews K (2007) Numerical simulation of the October 2002 dust event in Australia. J Geophys Res 112(D8):409–427CrossRefGoogle Scholar
  26. Shao Y, Wyrwoll KH, Chappell A, Huang J, Lin Z, Mc-Tainsh GH, Mikami M, Tanaka TY, Wang X, Yoon S (2011) Dust cycle: an emerging core theme in earth system science. Aeolian Res 2:181–204CrossRefGoogle Scholar
  27. Shimizu A, Sugimoto N, Matsui I, Arao K, Uno I, Murayama T, Kagawa N, Aoki K, Uchiyama A, Yamazaki A (2004) Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia. J Geophys Res 109(D19):1255–1263CrossRefGoogle Scholar
  28. Tanaka TY, Chiba M (2006) A numerical study of the contributions of dust source regions to the global dust budgets. Glob Planet Chang 52(1):88–104CrossRefGoogle Scholar
  29. Tegen I (2003) Modeling the mineral dust aerosol cycle in the climate system. Quat Sci Rev 22:1821–1834CrossRefGoogle Scholar
  30. Tegen I, Lacis AA, Fung I (1996) The influence on climate forcing of mineral aerosols from disturbed soils. Nature 380:419–422CrossRefGoogle Scholar
  31. Uno I, Eguchi K, Yumimoto K, Takemura T, Shimizu A, Uematsu M, Liu Z, Wang Z, Hara Y, Sugimoto N (2009) Asian dust transported on full circuit around the globe. Nat Geosci 2(8):557–560CrossRefGoogle Scholar
  32. van den Heever SC, Carrio GG, Cotton WR, DeMott PJ, Prenni AJ (2006) Impacts of nucleating aerosol on Florida storms. Part I: mesoscale simulations. J Atmos Sci 63(7):1752–1775CrossRefGoogle Scholar
  33. Wang Y, Choi Y, Zeng T, Ridley B, Blake N, Blake D, Flocke F (2006) Late-spring increase of trans-Pacific pollution transport in the upper troposphere. Geophys Res Lett 33(1).
  34. Watanabe M (2003) Asian jet waveguide and a downstream extension of the North Atlantic oscillation. J Clim 17(24):4674–4691CrossRefGoogle Scholar
  35. Wesely ML (1989) Parameterization of surface resistance to gaseous dry deposition in regional-scale numerical models. Atmos Environ 23:1293–1304CrossRefGoogle Scholar
  36. Wilcox EM, Lau KM, Kim KM (2010) A northward shift of the North Atlantic Ocean intertropical convergence zone in response to summertime Saharan dust outbreaks. Geophys Res Lett 37(4):90–98CrossRefGoogle Scholar
  37. Winker DM, Hunt WH, McGill MJ (2007) Initial performance assessment of CALIOP. Geophys Res Lett 34(19):228–262CrossRefGoogle Scholar
  38. Yu HB, Chin M, Winker DM, Omar AH, Liu ZY, Kittaka C, Diehl T (2010) Global view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART simulations: regional and seasonal variations. J Geophys Res 115(D4).
  39. Yu HB, Remer LA, Kahn RA, Chin M, Zhang Y (2013) Satellite perspective of aerosol intercontinental transport: from qualitative tracking to quantitative characterization. Atmos Res 124:73–100CrossRefGoogle Scholar
  40. Zhang ZX, Zhou W, Wenig M, Yang LG (2017a) Impact of long-range desert dust transport on coastal East Asia: analysis of urban dust concentration and wet deposition with model simulation. Air Qual Atmos Health 10(3):325–337. CrossRefGoogle Scholar
  41. Zhang ZX, Zhou W, Wenig M, Yang LG (2017b) Impact of long-range desert dust transport on hydrometeor formation over coastal East Asia. Adv Atmos Sci 34(1):101–115. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Environmental EngineeringInner Mongolia University of TechnologyHohhotChina
  2. 2.School of Energy and EnvironmentCity University of Hong KongHong KongChina
  3. 3.Research Institute of Fluid Dynamics, School of Mathematic ScienceInner Mongolia UniversityHohhotChina

Personalised recommendations