Air Quality, Atmosphere & Health

, Volume 12, Issue 2, pp 229–240 | Cite as

In situ NO abatement by photocatalysis—study under continuous NO injection in a 10-m3 experimental chamber

  • Jivko Topalov
  • Julie HotEmail author
  • Erick Ringot
  • Alexandra Bertron


Air pollution is a serious public health concern in France and many other countries. Nitrogen oxides (NOx) include nitrogen monoxide (NO) and nitrogen dioxide (NO2). They are mainly outdoor pollutants produced during combustion of fossil fuel. These gases can easily infiltrate buildings and thus increase indoor pollution. The recommended guideline values for NO2 are 200 μg/m3 (short-term exposure) and 40 μg/m3 (long-term exposure). Although no guideline values exist for NO, this gas can be oxidised by atmospheric ozone and thus produce NO2. This paper studies the depollution efficiency of photocatalysis towards indoor NO. Experiments were conducted at real scale, in a 10-m3 experimental chamber developed at the LMDC and used as a reactor. The interior walls of the chamber were equipped with painted plasterboards treated with photocatalytic coating (3 g/m2 of TiO2). Gas was continuously injected into the chamber according to a specific procedure: (1) pollutant injection at high flow rate to reach 200 ppb of NO, (2) pollutant injection at low flow rate in order to keep the NO concentration constant at 200 ± 10 ppb and (3) photocatalysis activation by switching on the light. Typical indoor lighting systems (fluorescent tubes, LED and halogen bulbs) were tested and UV fluorescent tubes were also used to optimise the photocatalytic efficiency. Results showed that NO indoor concentration was reduced by photocatalysis in real-world conditions. Significant NO degradation was obtained under visible light. In addition, using the experimental procedure presented in this paper, a new method for evaluating air depollution efficiency by photocatalysis at real scale is proposed.


Photocatalysis NOx In situ Experimental chamber TiO2 Visible light Indoor air quality 



The authors are grateful to CRISTAL for providing the photocatalytic products, to the Laplace laboratory for its expertise in spectroscopy, and to Bronkhorst for financing the equipment used for flow measurement and control.


  1. Aïssa AH, Puzenat E, Plassais A, Herrmann JM, Haehnel C, Guillard C (2011) Characterization and photocatalytic performance in air of cementitious materials containing TiO2. Case study of formaldehyde removal. Appl Catal B Environ 107(1–2):1–8Google Scholar
  2. Ao CH, Lee SC, Mak CL, Chan LY (2003) Photodegradation of volatile organic compounds (VOCs) and NO for indoor air purification using TiO2: promotion versus inhibition effect of NO. Appl Catal B Environ 42(2):119–129Google Scholar
  3. Baukal C (2005) Everything you need to know about NOx. Met Finish 103(11):18–24Google Scholar
  4. Blondeau P, Iordache V, Poupard O, Genin D, Allard F (2005) Relationship between outdoor and indoor air quality in eight French schools. Indoor Air 15(1):2–12Google Scholar
  5. CEN/TS 16980-1 (2016) Photocatalysis - continuous flow test methods - part 1: determination of the degradation of nitric oxide (no) in the air by photocatalytic materials. Eur Comm Stand. Available at: Accessed 3 Jul 2018
  6. Chen M, Chu JW (2011) NOx photocatalytic degradation on active concrete road surface - from experiment to real-scale application. J Clean Prod 19(11):1266–1272. Google Scholar
  7. Colls J (2002) Air pollution © 2002, 2nd edn. Spoon Press, LondonGoogle Scholar
  8. Crain N, Juenger M, Cros C, Terpeluk A, Burris L, McDonald-Buller E, Sullivan D, Kimura Y, Spinhirne J, Rung M (2016) Laboratory and field studies of photocatalytic NOx and O3 removal by coatings on concrete - technical report 0-6636-1, Available at: Accessed 3 Jul 2018
  9. EU (2008) Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off J Eur Communities 152:1–43Google Scholar
  10. Fenger J (2009) Air pollution in the last 50 years - from local to global. Atmos Environ 43(1):13–22. Google Scholar
  11. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1(1):1–21 Available at: Accessed 3 Jul 2018Google Scholar
  12. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63(12):515–582Google Scholar
  13. Gallus M, Akylas V, Barmpas F, Beeldens A, Boonen E, Boréave A, Cazaunau M, Chen H, Daële V, Doussin JF, Dupart Y, Gaimoz C, George C, Grosselin B, Herrmann H, Ifang S, Kurtenbach R, Maille M, Mellouki A, Miet K, Mothes F, Moussiopoulos N, Poulain L, Rabe R, Zapf P, Kleffmann J (2015) Photocatalytic de-pollution in the Leopold II tunnel in Brussels: NOx abatement results. Build Environ 84(2):125–133Google Scholar
  14. Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C: Photochem Rev 9(1):1–12 Available at: Accessed 3 Jul 2018Google Scholar
  15. General T, Kopp P (2014) ANSES Note and recommendations 2011-CRD-11 / Study of the socio-economic cost of indoor air pollutants. Available at: Accessed 3 Jul 2018
  16. Guerrini GL (2012) Photocatalytic performances in a city tunnel in Rome: NOx monitoring results. Constr Build Mater 27(1):165–175. Google Scholar
  17. Hernández Rodríguez MJ, Pulido Melián E, González Díaz O, Araña J, Macías M, González Orive A, Doña Rodríguez JM (2016) Comparison of supported TiO2 catalysts in the photocatalytic degradation of NOx. J Mol Catal A Chem 413:56–66Google Scholar
  18. Horgnies M, Dubois-Brugger I, Gartner EM (2012) NOx de-pollution by hardened concrete and the influence of activated charcoal additions. Cem Concr Res 42(10):1348–1355. Google Scholar
  19. Horgnies M, Dubois-Brugger I, Stora E (2015) An innovative de-polluting concrete doped with activated carbon to enhance air quality. In: 10th International Concrete Sustainability Conference (NRMCA), At Miami (USA), pp 0–13. Available at Accessed 3 Jul 2018
  20. Hot J, Topalov J, Ringot E, Bertron A (2017a) Investigation on parameters affecting the effectiveness of photocatalytic functional coatings to degrade NO: TiO2 amount on surface, illumination and substrate roughness. Int J Photoenergy 1–35.
  21. Hot J, Martinez T, Wayser B, Ringot E, Bertron A (2017b) Photocatalytic degradation of NO/NO2 gas injected into a 10-m3 experimental chamber. Environ Sci Pollut Res 24(14):12562–12570. Google Scholar
  22. Hu Y, Song X, Jiang S, Wei C (2015) Enhanced photocatalytic activity of Pt-doped TiO2 for NOx oxidation both under UV and visible light irradiation: a synergistic effect of lattice Pt4+and surface PtO. Chem Eng J 274(x):102–112. Google Scholar
  23. Hüsken G, Hunger M, Brouwers HJH (2009) Experimental study of photocatalytic concrete products for air purification. Build Environ 44(12):2463–2474. Google Scholar
  24. Ifang S, Gallus M, Liedtke S, Kurtenbach R, Wiesen P, Kleffmann J (2014) Standardization methods for testing photo-catalytic air remediation materials: problems and solution. Atmos Environ 91:154–161. Google Scholar
  25. ISO 22197-1 (2016) Fine ceramics (advanced ceramics, advanced technical ceramics) - test method for air-purification performance of semiconducting photocatalytic materials - Part 1: removal of nitric oxide. AFNOR. Available at:
  26. Karapati S, Giannakopoulou T, Todorova N, Boukos N, Antiohos S, Papageorgiou D, Chaniotakis E, Dimotikali D, Trapalis C (2014) TiO2 functionalization for efficient NOx removal in photoactive cement. Appl Surf Sci 319(1):29–36. Google Scholar
  27. Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P, Behar JV, Hern SC, Engelmann WH (2001) The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Environ Epidemiol 11(3):231–252Google Scholar
  28. Krzyzanowski M, Cohen A (2008) Update of WHO air quality guidelines. Air Qual Atmos Health 1:7–13Google Scholar
  29. Laurence G (2015) Traitement de l’air intérieur par photocatalyse. Performance et innocuité de systèmes et matériaux - Rapport de recherche ADEMEGoogle Scholar
  30. Li Y, Henze DK, Jack D, Kinney PL (2016) The influence of air quality model resolution on health impact assessment for fine particulate matter and its components. Air Qual Atmos Health 9:51–68Google Scholar
  31. Lin L, Chai Y, Zhao B, Wei W, He D, He B, Tang Q (2013) Photocatalytic oxidation for degradation of VOCs. Open J Inorg Chem 3:14–25Google Scholar
  32. Maggos T, Bartzis JG, Liakou M, Gobin C (2007) Photocatalytic degradation of NOx gases using TiO2-containing paint: a real scale study. J Hazard Mater 146(3):668–673Google Scholar
  33. Maggos T, Plassais A, Bartzis JG, Vasilakos C, Moussiopoulos N, Bonafous L (2008) Photocatalytic degradation of NOx in a pilot street canyon configuration using TiO2-mortar panels. Environ Monit Assess 136(1–3):35–44Google Scholar
  34. Mamaghani AH, Haghighat F, Lee CS (2017) Photocatalytic oxidation technology for indoor environment air purification: the state-of-the-art. Appl Catal B Environ 203:247–269. Google Scholar
  35. Martinez T, Bertron A, Ringot E, Escadeillas G (2011) Degradation of NO using photocatalytic coatings applied to different substrates. Build Environ 46(9):1808–1816Google Scholar
  36. Martinez T, Dompoint D, Bertron A, Escadeillas G (2013) Photocatalytic coatings for building materials: degradation of NOx and inhibition of algal growth. Int J of 3R's 4(1):520–533Google Scholar
  37. Mills A, Elouali S (2015) The nitric oxide ISO photocatalytic reactor system: measurement of NOx removal activity and capacity. J Photochem Photobiol A Chem 305(x):29–36Google Scholar
  38. Mosqueron L, Nedellec V (2004) Inventaire des données françaises sur la qualité de l’air à l’intérieur des bâtiments: actualisation des données sur la période 2001–2004. Observatoire de la qualité de l’air intérieur (OQAI) 1–61. Available at: Accessed 3 Jul 2018
  39. Mosqueron L, Nedellec V (2005) Hiérarchisation sanitaire des paramètres d’intérêt pour l’observatoire de la qualité de l’air intérieur: application aux phtalates, parafines chlorées à chaine courte, organo-etains, alkyl phénols et retardateurs de flamme bromes. CSTB 1–98. Available at: Accessed 3 Jul 2018
  40. NF EN ISO 9972 (2016) Thermal performance of buildings - Determination of air permeability of buildings - Fan pressurization method. AFNOR. Available at: Accessed 3 Jul 2018
  41. Ohama Y, Van Gemert D (2011) In: Ohama Y, Van Gemert D (eds) Applications of titanium dioxide photocatalysis to construction materials: state-of-the-art report of the RILEM Technical Committee 194-TDP. Springer Netherlands, Dordrecht Available at: Accessed 3 Jul 2018Google Scholar
  42. Rajeshwar K (2007) Fundamentals of semiconductors electrochemistry and photoelectrochemistry. Encycl Electrochem 1–51. Available at: Accessed 3 Jul 2018
  43. Ren H, Koshy P, Chen WF, Qi S, Sorrell CC (2017) Photocatalytic materials and technologies for air purification. J Hazard Mater 325:340–366. Google Scholar
  44. Solomon PA (2012) Introduction: special issue of air quality, atmosphere and health for air pollution and health: bridging the gap from sources-to-health outcomes. Air Qual Atmos Health 5:3–8Google Scholar
  45. Todorova N, Vaimakis T, Petrakis D, Hishita S, Boukos N, Giannakopoulou T, Giannouri M, Antiohos S, Papageorgiou D, Chaniotakis E, Trapalis C (2013) N and N,S-doped TiO2 photocatalysts and their activity in NOx oxidation. Catal Today 209(2):41–46. Google Scholar
  46. Toro C, Jobson BT, Haselbach L, Shen S, Chung SH (2016) Photoactive roadways: determination of CO, NO and VOC uptake coefficients and photolabile side product yields on TiO2 treated asphalt and concrete. Atmos Environ 139:37–45Google Scholar
  47. World Health Organization (2006) WHO air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: global update 2005: summary of risk assessment. World Health Organization, Geneva, pp 1–22 Available at: Accessed 3 Jul 2018Google Scholar
  48. World Health Organization (2016) Ambient air pollution: a global assessment of exposure and burden of disease. World Health Organization, Geneva, pp 1–131 Available at: Accessed 3 Jul 2018Google Scholar
  49. Yu QL, Brouwers HJH (2009) Indoor air purification using heterogeneous photocatalytic oxidation. Part I: experimental study. Appl Catal B Environ 92(3–4):454–461Google Scholar
  50. Zhong L, Haghighat F (2015) Photocatalytic air cleaners and materials technologies - abilities and limitations. Build Environ 91:191–203. Google Scholar
  51. Zhou L, Tan X, Zhao L, Sun M (2007) Photocatalytic oxidation of NOx over visible-light-responsive nitrogen-doped TiO2. Korean J Chem Eng 24(6):1017–1021Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Jivko Topalov
    • 1
  • Julie Hot
    • 1
    Email author
  • Erick Ringot
    • 1
    • 2
  • Alexandra Bertron
    • 1
  1. 1.LMDC, Université de Toulouse, INSA/UPS Génie CivilToulouse Cedex 04France
  2. 2.LRVision SARLCastanet-TolosanFrance

Personalised recommendations