Propagation principle for parabolic H-measures

  • Ivan IvecEmail author
  • Martin Lazar


We extend results obtained by Francfort (An introduction to H-measures and their applications. Variational problems in materials science. Birkhäuser, Basel, pp 85–110, 2006) to parabolic H-measures developed by Antonić and Lazar (J Funct Anal 265:1190–1239, 2013). The well known theory of pseudodifferential operators is extended to parabolic classes of symbols and operators and used to obtain results applicable to a wide class of partial differential equations. The main result is the propagation principle which is then applied to the Schrödinger equation and the vibrating plate equation.


Parabolic H-measures Localisation principle Propagation principle The Schrödinger equation The vibrating plate equation 

Mathematics Subject Classification

35K10 35K25 35S05 46G10 



  1. 1.
    Antonić, N.: H-measures applied to symmetric systems. Proc. R. Soc. Edinb. 126A, 1133–1155 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Antonić, N., Lazar, M.: H-measures and variants applied to parabolic equations. J. Math. Anal. Appl. 343, 207–225 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Antonić, N., Lazar, M.: Parabolic variant of H-measures in homogenisation of a model problem based on Navier–Stokes equation. Nonlinear Anal. B: Real World Appl. 11, 4500–4512 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Antonić, N., Lazar, M.: Parabolic H-measures. J. Funct. Anal. 265, 1190–1239 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Antonić, N., Mitrović, D.: \(H\)-distributions: an extension of \(H\)-measures to a \({\rm L}^p-{\rm L}^q\) setting. Abstr. Appl. Anal. 2011 Article ID 901084, 12 (2011)Google Scholar
  6. 6.
    Bényi, Á., Bownik, M.: Anisotropic classes of homogeneous pseudodifferential symbols. Stud. Math. 200(1), 41–66 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Boggiatto, P., Fabio, N.: Non-commutative residues for anisotropic pseudo-differential operators in \(\mathbb{R}^{n}\). J. Funct. Anal. 203(2), 305–320 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Burq, N., Gérard, P.: Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. C. R. Acad. Sci. Paris Sér. I Math. 325(7), 749–752 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dehman, B., Léautaud, M., Le Rousseau, J.: Controllability of two coupled wave equations on a compact manifold. Arch. Ration. Mech. Anal. 211(1), 113–187 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Aethods for Science and Technology, pp. 1–6. Springer, Berlin (1992)Google Scholar
  11. 11.
    Erceg, M., Ivec, I.: Second commutation lemma for fractional H-measures. J. Pseudo-Differ. Oper. Appl. 9(3), 589–613 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Francfort, G.A.: An Introduction to H-Measures and Their Applications. Variational Problems in Materials Science, pp. 85–110. Birkhäuser, Basel (2006)zbMATHGoogle Scholar
  13. 13.
    Gérard, P.: Microlocal defect measures. Comm. Partial Diff. Eq. 16, 1761–1794 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gérard, P.: Mesures semi-classiques et ondes de Bloch. Sem. EDP 1990–91 (exp. \(\text{n}^\circ \) XVI), Ecole Polytechnique, Palaiseau (1991)Google Scholar
  15. 15.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators I–IV, Springer (1985–90)Google Scholar
  16. 16.
    Lazar, M.: Exploring limit behaviour of non-quadratic terms via H-measures. Application to small amplitude homogenisation. Appl. Anal. 96(16), 2832–2845 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lazar, M., Zuazua, E.: Averaged control and observation of parameter-depending wave equations, C. R. Acad. Sci. Paris, Ser. I 352(6), 497–502 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lazar, M., Mitrović, D.: Velocity averaging—a general framework. Dyn. Partial Differ. Equ. 9, 239–260 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications I–III, Springer (1972–1973)Google Scholar
  20. 20.
    Lions, P.-L., Paul, T.: Sur les mesures de Wigner. Revista Mat. Iberoamericana 9, 553–618 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Mitrović, D., Ivec, I.: A generalization of H-measures and application on purely fractional scalar conservation laws. Comm. Pure Appl. Anal. 10(6), 1617–1627 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Nicola, F.: Hörmander’s Inequality for anisotropic pseudo-differential operators. J. Partial Differ. Equ. 15(4), 49–64 (2002)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Xavier, S.R.: Elementary introduction to the theory of pseudodifferential operators. CRC Press, Boca Raton (1991)zbMATHGoogle Scholar
  24. 24.
    Tartar, L.: H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. R. Soc. Edinb. 115A, 103–108 (1990)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Tsutsumi, C.: The Fundamental Solution for a Parabolic Pseudo-Differential Operator and Parametrices for Degenerate Operators. Proc. Jpn. Acad. 51, 103–108 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Man, W.: Wong: An Introduction to Pseudo-Differential Operators, 2nd edn. World Scientific, Singapore (1999)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of MetallurgyUniversity of ZagrebSisakCroatia
  2. 2.University of DubrovnikDubrovnikCroatia

Personalised recommendations