Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Decay estimates for the double dispersion equation with initial data in real Hardy spaces

  • 66 Accesses

  • 1 Citations


We study the Cauchy problem for the linear double dispersion equation

$$\begin{aligned} u_{tt}-\Delta u_{tt}+\Delta ^2 u-\Delta u-\Delta u_t =0, \quad t\ge 0,\ x\in {\mathbb {R}}^n \end{aligned}$$

and we derive long time decay estimates for the solution in \(L^p\) spaces and in real Hardy spaces. We employ the obtained results to study the equation with nonlinearity \(\Delta f(u)\) and nonsmooth f.

This is a preview of subscription content, log in to check access.


  1. 1.

    Charão, R.C., da Luz, C.R.: Asymptotic properties for a semilinear plate equation in unbounded domains. J. Hyperbolic Differ. Equ. 6, 269–294 (2009)

  2. 2.

    Charão, R.C., da Luz, C.R., Ikehata, R.: New decay rates for a problem of plate dynamics with fractional damping. J. Hyperbolic Differ. Equ. 10(3), 563–575 (2013).

  3. 3.

    Charão, R.C., da Luz, C.R., Ikehata, R.: Sharp decay rates for wave equations with a fractional damping via new method in the fourier space. J. Math. Anal. Appl. 408(1), 247–255 (2013).

  4. 4.

    Charão, R.C., Horbach, J.L., Ikehata, R.: Optimal decay rates and asymptotic profile for the plate equation with structural damping. J. Math. Anal. Appl. 440, 529–560 (2016)

  5. 5.

    Chen, G., Wang, Y., Wang, S.: Initial boundary value problem of the generalized cubic double dispersion equation. J. Math. Anal. Appl. 299, 563–577 (2004)

  6. 6.

    D’Abbicco, M.: A benefit from the \(L^1\) smallness of initial data for the semilinear wave equation with structural damping. In: Mityushev , V.V., Ruzhansky, M.V. (eds.) Proceedings of the \(9{{\rm th }}\) ISAAC Congress Current Trends in Analysis and its Applications, 2015, 209–216.

  7. 7.

    D’Abbicco, M.: \(L^1-L^1\) estimates for a doubly dissipative semilinear wave equation. Nonlinear Differ. Equ. Appl. NoDEA 24, 1–23 (2017).

  8. 8.

    D’Abbicco, M., Ebert, M.R.: Diffusion phenomena for the wave equation with structural damping in the \(L^p-L^q\) framework. J. Differ. Equ. 256, 2307–2336 (2014).

  9. 9.

    D’Abbicco, M., Ebert, M.R.: An application of \(L^p-L^q\) decay estimates to the semilinear wave equation with parabolic-like structural damping. Nonlinear Anal. 99, 16–34 (2014).

  10. 10.

    D’Abbicco, M., Ebert, M.R.: A classification of structural dissipations for evolution operators. Math. Meth. Appl. Sci. 39, 2558–2582 (2016).

  11. 11.

    D’Abbicco, M., Ebert, M.R.: A new phenomenon in the critical exponent for structurally damped semi-linear evolution equations. Nonlinear Anal. 149, 1–40 (2017)

  12. 12.

    D’Abbicco, M., Ebert, M.R., Picon, T.: Long time decay estimates in real Hardy spaces for evolution equations with structural dissipation. J. Pseudo-Differ. Oper. Appl. 7, 261–293 (2016).

  13. 13.

    D’Abbicco, M., Ikehata, R.: Asymptotic profile of solutions for strongly damped Klein–Gordon equations. Math. Meth. Appl. Sci. (2019).

  14. 14.

    D’Abbicco, M., Reissig, M.: Semilinear structural damped waves. Math. Methods Appl. Sci. 37, 1570–1592 (2014)

  15. 15.

    Fefferman, C., Stein, E.: \(H^p\) spaces of several variables. Acta Math. 129, 137–193 (1972)

  16. 16.

    Garcia-Cuerva, J., Rubio De Francia, J.L.: Weighted Norm Inequalities and Related Topics. Elsevier Science Publishers, Amsterdam (1985)

  17. 17.

    Ikehata, R.: New decay estimates for linear damped wave equations and its application to nonlinear problem. Math. Meth. Appl. Sci. 27, 865–889 (2004).

  18. 18.

    Ikehata, R.: Asymptotic profiles for wave equations with strong damping. J. Differ. Equ. 257, 2159–2177 (2014).

  19. 19.

    Ikehata, R., Ohta, M.: Critical exponents for semilinear dissipative wave equations in \(\mathbb{R}^N\). J. Math. Anal. Appl. 269, 87–97 (2002)

  20. 20.

    Ikehata, R., Sawada, A.: Asymptotic profile of solutions for wave equations with frictional and viscoelastic damping terms. Asymptot. Anal. 98, 59–77 (2016).

  21. 21.

    Ikehata, R., Iyota, S.: Asymptotic profile of solutions for some wave equations with very strong structural damping. Math. Methods Appl. Sci. 41(13), 5074–5090 (2018)

  22. 22.

    Ikehata, R., Tanizawa, K.: Global existence of solutions for semilinear damped wave equations in \(R^N\) with noncompactly supported initial data. Nonlinear Anal. 61, 1189–1208 (2005)

  23. 23.

    Kawashima, S., Wang, Y.: Global existence and asymptotic behavior of solutions to the generalized cubic double dispersion equation. Anal. Appl. 13, 233–254 (2015)

  24. 24.

    Mangin, G.A.: Nonlinear waves in solids. In: Jeffrey, A., Engelbrecht, J. (eds.) Physical and Mathematical Models of Nonlinear Waves in Solids. Elsevier, Amsterdam (1994)

  25. 25.

    Matsumura, A.: On the asymptotic behavior of solutions of semi-linear wave equations. Publ. RIMS. 12, 169–189 (1976)

  26. 26.

    Miyachi, A.: On some estimates for the wave equation in \(L^p\) and \(H^p\). J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27, 331–354 (1980)

  27. 27.

    Miyachi, A.: On some Fourier multipliers for \(H^p\). J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27, 157–179 (1980)

  28. 28.

    Miyachi, A.: On some singular Fourier multipliers. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28, 267–315 (1981)

  29. 29.

    Narazaki, T.: \(L^p-L^q\) estimates for damped wave equations and their applications to semilinear problem. J. Math. Soc. Jpn. 56, 586–626 (2004)

  30. 30.

    Nishihara, K.: \(L^p-L^q\) estimates for solutions to the damped wave equations in 3-dimensional space and their applications. Math. Z. 244, 631–649 (2003)

  31. 31.

    Duong, P.T., Kainane, M., Reissig, M.: Global existence for semi-linear structurally damped \(\sigma \)-evolution models. J. Math. Anal. Appl. 431, 569–596 (2015).

  32. 32.

    Polat, N., Ertas, A.: Existence and blow-up of solution of Cauchy problem for the generalized damped multidimensional Boussinesq equation. J. Math. Anal. Appl. 349, 10–20 (2009)

  33. 33.

    Samsonov, A.M.: On existence of longitudinal strain solitons in a nonlinearly elastic rod. Sov. Phys.-Dokl. 4, 298–300 (1988)

  34. 34.

    Samsonov, A.M.: On some exact travelling wave solutions for nonlinear hyperbolic equation. In: Fusco, D., Jeffrey, A. (eds.) Nonlinear Waves and Dissipative Effects, Pitmann Research Notes in Mathematics Series, vol. 227, pp. 123–132. Longman Scientific & Technical, Longman (1993)

  35. 35.

    Samsonov, A.M., Sokurinskaya, E.V.: On the excitation of a longitudinal deformation soliton in a nonlinear elastic rod. Sov. Phys. Tech. Phys. 33, 989–991 (1988)

  36. 36.

    Todorova, G., Yordanov, B.: Critical exponent for a nonlinear wave equation with damping. J. Differ. Equ. 174, 464–489 (2001)

  37. 37.

    Wang, Y., Chen, S.: Asymptotic profile of solutions to the double dispersion equation. Nonlinear Anal. 134, 236–254 (2016)

  38. 38.

    Wang, S., Chen, G.: Cauchy problem of the generalized double dispersion equation. Nonlinear Anal. 64, 159–173 (2006)

  39. 39.

    Xu, R., Liu, Y., Yu, T.: Global existence of solution for Cauchy problem of multidimensional generalized double dispersion equations. Nonlinear Anal. 71, 4977–4983 (2009)

Download references


The results for the linear problem in this paper are essentially contained in the master thesis of the second author, who has been a student at University of Bari.

Author information

Correspondence to Marcello D’Abbicco.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

D’Abbicco, M., De Luca, A. Decay estimates for the double dispersion equation with initial data in real Hardy spaces. J. Pseudo-Differ. Oper. Appl. 11, 363–386 (2020).

Download citation


  • Double dispersion equation
  • Cauchy problem
  • Fourier multiplier estimates
  • Real Hardy spaces
  • Decay estimates
  • Global small data solutions

Mathematics Subject Classification

  • 35L15
  • 35L30
  • 42B15
  • 42B30
  • 42B37