Study a class of nonlinear fractional non-autonomous evolution equations with delay

  • Haide Gou
  • Baolin LiEmail author


In this paper, we deal with a class of nonlinear fractional non-autonomous evolution equations with delay by using Hilfer fractional derivative, which generalized the famous Riemann–Liouville fractional derivative. Combining techniques of fractional calculus, measure of noncompactness and some fixed point theorem, we obtain new existence result of mild solutions when the associated semigroup is not compact. Furthermore, the assumptions that the nonlinear term satisfies some growth condition and noncompactness measure condition. The results obtained improve and extend some related conclusions. Finally, two examples will be presented to illustrate the main results.


Non-autonomous evolution equations Mild solutions Hilfer fractional derivative 

Mathematics Subject Classification

34K30 34K45 35B10 47D06 



We wish to thank the referees for their valuable comments.

Author Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

All the authors declare that they have no competing interests.


  1. 1.
    Benchohra, M., Henderson, J., Ntouyas, S.: Impulsive Differential Equations and Inclusions. Contemporary Mathematics and its Applications, vol. 2. Hindawi Publishing Corporation, Cairo, Egypt (2006)Google Scholar
  2. 2.
    Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence result for boundary value problem of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109, 973–1033 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ahmad, B., Sivasundaram, S.: Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations. Nonlinear Anal. Hybrid Syst. 3, 251–258 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Benchohra, M., Seba, D.: Impulsive fractional differential equations in Banach spaces. Electron. J. Qual. Theory Differ. Equ. 8, 1–14 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Balachandran, K., Kiruthika, S.: Existence of solutions of abstract fractional impulsive semilinear evolution equations. Electron. J. Qual. Theory Differ. Equ. 4, 1–12 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Banaś, J., Goebel, K.: Measure of noncompactness in Banach spaces. In: Lectures Notes in Pure and Applied Mathematics, vol. 60. Marcel Pekker, New York (1980)Google Scholar
  7. 7.
    Aghajani, A., Banaś, J., Sabzali, N.: Some generalizations of Darbo fixed point theorem and application. Bull. Belg. Math. Soc. Simon Stevin 20(2), 345–358 (2013)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Lakzian, H., Gopal, D., Sintunavarat, W.: New fixed point results for mappings of contractive type with an application to nonlinear fractional differential equations. J. Fixed Point Theory Appl.
  9. 9.
    Shu, X.B., Wang, Q.Q.: The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order \(1<\alpha <2\). Comput. Math. Appl. 64, 2100–2110 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)CrossRefzbMATHGoogle Scholar
  11. 11.
    Wang, J., Feckan, M., Zhou, Y.: On the new concept of solutions and existence results for impulsive fractional evolution equations. Dyn. Partial Differ. Equ. 8, 345–361 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ye, H., Gao, J., Ding, Y.: A generalized Gronwall inequality and its applications to a fractional differential equation. J. Math. Anal. Appl 328, 1075–1081 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Wang, J., Zhou, Y., Fec̆kan, M.: Alternative results and robustness for fractional evolution equations with periodic boundary conditions. Electron. J. Qual. Theory Differ. Equ. 97, 1–15 (2011)MathSciNetGoogle Scholar
  14. 14.
    Wang, J., Zhou, Y., Feckan, M.: Abstract Cauchy problem for fractional differential equations. Nonlinear Dyn. 74, 685–700 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Chen, P.Y., Li, Y.X., Chen, Q.Y., Feng, B.H.: On the initial value problem of fractional evolution equations with noncompact semigroup. Comput. Math. Appl. 67, 1108–1115 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    El-Borai, M.M.: The fundamental solutions for fractional evolution equations of parabolic type. J. Appl. Math. Stoch. Anal. 3, 197–211 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Chen, P.Y., Zhang, X.P., Li, Y.: Study on fractiona non-autonomous evolution equations with delay. Comput. Math. Appl. 73(5), 794–803 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Agarwal, P., Berdyshev, A.S., Karimov, E.T.: Solvability of a non-local problem with integral transmitting condition for mixed type equation with Caputo fractional derivative. Results Math. 71(3–4), 1235–1257 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Wang, G., Zhang, L., Song, G.: Systems of first order impulsive functional differential equations with deviating arguments and nonlinear boundary conditions. Nonlinear Anal. Theory Methods Appl. 74, 974–982 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Wang, J.R., Zhou, Y., Fec̆kan, M.: On recent developments in the theory of boundary value problems for impulsive fractional differentail equations. Comput. Math. Appl. 64, 3008–3020 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Wang, J.R., Fec̆kan, M., Zhou, Y.: Ulam’s type stability of impulsive ordinary differential equations. J. Math. Anal. Appl. 395, 258–264 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wang, J.R., Li, X., Wei, W.: On the natural solution of an impulsive fractional differential equation of order \(q\in (1,2)\). Commun. Nonlinear Sci. Numer. Simul. 17, 4384–4394 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Fec̆kan, M., Zhou, Y., Wang, J.R.: On the concept and existence of solution for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 3050–3060 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Wang, G., Ahmad, B., Zhang, L., Nieto, J.J.: Comments on the concept of existence of solution for impulsive fractional differentail equations. Commun. Nonlinear Sci. Numer. Simul. 19, 401–403 (2014)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Zhou, W.X., Chu, Y.D.: Existence of solutions for fractional differential equations with multi-point boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 17, 1142–1148 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Bai, Z.B., Du, X.Y., Yin, C.: Existence results for impulsive nonlinear fractional differential equation with mixed boundary conditions. Bound. Value Probl. 63, 1–11 (2016)MathSciNetGoogle Scholar
  27. 27.
    Rashid, M.H.M., Al-Omari, A.: Local and global existence of mild solutions for impulsive fractional semilinear integro-differential equation. Commun. Nonlinear Sci. Numer. Simul. 16, 3493–503 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Gou, H.D., Li, B.L.: Local and global existence of mild solution to impulsive fractional semilinear integro-differential equation with noncompact semigroup. Commun. Nonlinear Sci. Numer. Simul. 42, 204–214 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Yu, X.L., Wang, J.R.: Periodic BVPs for fractional order impulsive evolution equations. Bound. Value Probl. 35 (2014)Google Scholar
  30. 30.
    Chadha, A., Pandey, D.N.: Existence results for an impulsive neutral fractional integro differential equation with infinite delay. Int. J. Differ. Equ. 2014, 10, Article ID 780636Google Scholar
  31. 31.
    Wang, J., Fec̆kan, M., Zhou, Y.: Relaxed controls for nonlinear frational impulsive evolution equations. J. Optim. Theory Appl. 156, 13–32 (2013)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Li, F., Liang, J., Xu, H.K.: Existence of mild solutions for fractioanl integrodifferential equations of Sobolev type with nonlocal conditions. J. Math. Anal. Appl. 391, 510–525 (2012)CrossRefzbMATHGoogle Scholar
  33. 33.
    Yang, M., Wang, Q.: Existence of mild solutions for a class of Hilfer fractional evolution equations with nonlocal conditions. Fract. Calc. Appl. Anal. 20(3), 679–705 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Tariboon, J., Ntouyas, S.K., Agarwal, P.: New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations. Adv. Differ. Equ. 2015, 18 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Zhang, X., Agarwal, P., Liu, Z., Peng, H.: The general solution for impulsive differential equations with Riemann–Liouville fractional-order \(q\in (1, 2)\). Open Math. 13(1), 908–930 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Hilfer, R.: Applications of Fractional Caiculus in Physics. World Scientific, Singapore (2000)CrossRefzbMATHGoogle Scholar
  37. 37.
    Furati, K.M., Kassim, M.D., Tatar, Ne-: Existence and uniqueness for a problem involving Hilfer factional derivative. Comput. Math. Appl. 64, 1612–1626 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Gu, H., Trujillo, J.J.: Existence of mild solution for evolution equation with Hilfre fractional derivative. Appl. Math. Comput. 257, 344–354 (2015)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  40. 40.
    Li, Y.X.: The positive solutions of abstract semilinear evolution equations and their applications. Acta Math. Sin. 39(5), 666–672 (1996). (in Chinese)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Guo, D.J., Sun, J.X.: Ordinary Differential Equations in Abstract Spaces. Shandong Science and Technology, Jinan (1989). (in Chinese)Google Scholar
  42. 42.
    Heinz, H.R.: On the behavior of measure of noncompactness with respect to differentiation and integration of vector-valued functions. Nonlinear Anal. 71, 1351–1371 (1983)CrossRefzbMATHGoogle Scholar
  43. 43.
    Deimling, K.: Nonlinear Functional Analysis. Springer, New York (1985)CrossRefzbMATHGoogle Scholar
  44. 44.
    Sun, J., Zhang, X.: The fixed point theorem of convex-power condensing operator and applications to abstract semilinear evolution equations. Acta Math. Sin. 48, 439–446 (2005). (in Chinese)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Liang, J., Xiao, T.J.: Abstract degenerate Cauchy problems in locally convex spaces. J. Math. Anal. Appl. 259, 398–412 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Zhou, Y., Zhang, L., Shen, X.H.: Existence of mild solutions for fractioanl evolution equations. J. Integral Equ. Appl. 25, 557–586 (2013)CrossRefzbMATHGoogle Scholar
  47. 47.
    Zhou, Y., Jiao, F.: Nonlocal Cauchy problem for fractional evolution eqautions. Nonlinear Anal. Real World Appl. 5, 4465–4475 (2010)CrossRefzbMATHGoogle Scholar
  48. 48.
    Mainardi, F., Paradisi, P., Gorenflo, R.: Probability distributions generated by fractional diffusion equations. In: Kertesz, I., Kondor, I. (eds.) Econophysics: An Emerging Science. Kluwer, Dordrecht (2000)Google Scholar
  49. 49.
    Ouyang, Z.: Existence and uniqueness of the solutions for a class of nonlinear fractional order partial differential equations with delay. Comput. Math. Appl. 61, 860–870 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Zhu, B., Liu, L., Wu, Y.: Existence and uniqueness of global mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay. Comput. Math. Appl. (2016).

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.College of Mathematics and StatisticsNorthwest Normal UniversityLanzhouPeople’s Republic of China

Personalised recommendations