Advertisement

Boundedness of pseudodifferential operators with symbols in Wiener amalgam spaces on modulation spaces

  • Lorenza D’Elia
  • S. Ivan Trapasso
Article
  • 157 Downloads

Abstract

This paper provides sufficient conditions for the boundedness of Weyl operators on modulation spaces. The Weyl symbols belong to Wiener amalgam spaces, or generalized modulation spaces, as recently renamed by their inventor Hans Feichtinger. This is the first result which relates symbols in Wiener amalgam spaces to operators acting on classical modulation spaces.

Keywords

Wigner distribution Wiener amalgam spaces Modulation spaces 

Mathematics Subject Classification

42B35 35B65 35J10 35B40 

Notes

Acknowledgements

The authors would like to thank Professors Elena Cordero and Fabio Nicola for fruitful conversations and comments.

References

  1. 1.
    Beltiţă, I., Beltiţă, D.: Modulation spaces of symbols for representations of nilpotent lie groups. J. Fourier Anal. Appl. 17, 290 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bényi, A., Gröchenig, K., Okoudjou, K.A., Rogers, L.G.: Unimodular Fourier multipliers for modulation spaces. J. Funct. Anal. 246(2), 366–384 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Boggiatto, P., De Donno, G., Oliaro, A.: Time-frequency representations of Wigner type and pseudo-differential operators. Trans. Am. Math. Soc. 362(9), 4955–4981 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cordero, E., de Gosson, M., Nicola, F.: On the invertibility of Born-Jordan quantization. J. Math. Pures Appl. 105(4), 537–557 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cordero, E., de Gosson, M., Nicola, F.: Time-frequency analysis of Born-Jordan pseudodifferential operators. J. Funct. Anal. 272(2), 577–598 (2017). doi: 10.1016/j.jfa.2016.10.004 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cordero, E., Gröchenig, K.: Time-frequency analysis of localization operators. J. Funct. Anal. 205(1), 107–131 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cordero, E., Gröchenig, K., Nicola, F., Rodino, L.: Generalized metaplectic operators and the Schrödinger equation with a potential in the Sjöstrand Class. J. Math. Phys. 55(8), 081506 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cordero, E., Nicola, F.: Metaplectic representation on Wiener amalgam spaces and applications to the Schrödinger equation. J. Funct. Anal. 254, 506–534 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cordero, E., Nicola, F.: Strichartz estimates in Wiener amalgam spaces for the Schrödinger equation. Math. Nachr. 281(1), 25–41 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cordero, E., Nicola, F.: Metaplectic representation on Wiener amalgam spaces and applications to the Schrödinger equation. J. Funct. Anal. 254, 506–534 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cordero, E., Nicola, F.: Boundedness of Schrödinger type propagators on modulation spaces. J. Fourier Anal. Appl. 16(3), 311–339 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cordero, E., Nicola, F.: Sharp continuity results for the short-time Fourier transform and for localization operators. Monatsh. Math. 162, 251–276 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Cordero, E., Nicola, F.: Pseudodifferential operators on \(L^p\), Wiener amalgam and modulation spaces. Int. Math. Res. Notices 10, 1860–1893 (2010)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Cordero, E., Nicola, F.: Sharp integral bounds for Wigner distributions. Int. Math. Res. Notices 2016(00), 1–29 (2016). doi: 10.1093/imrn/rnw250 CrossRefGoogle Scholar
  15. 15.
    Cordero, E., Nicola, F.: On the Schrödinger equation with potential in modulation spaces. J. Pseudo Differ. Oper. Appl. 5(3), 319–341 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Cordero, E., Nicola, F., Rodino, L.: Time-frequency analysis of Fourier integral operators. Commun. Pure Appl. Anal. 9(1), 1–21 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Cordero, E., Nicola, F., Rodino, L.: Sparsity of Gabor representation of Schrödinger propagators. Appl. Comput. Harmonic Anal. 26(3), 357–370 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Cordero, E., Nicola, F., Rodino, L.: Gabor representations of evolution operators. Trans. Am. Math. Soc. 367(11), 7639–7663 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Cordero, E., Nicola, F., Rodino, L.: Schrödinger equations with rough Hamiltonians. J. Disc. Contin. Dyn. Syst. A 35(10), 4805–4821 (2015)CrossRefGoogle Scholar
  20. 20.
    Cordero, E., Nicola, F., Rodino, L.: Propagation of the Gabor Wave Front Set for Schrödinger Equations with non-smooth potentials. Rev. Math. Phys. 27(1), 1550001 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Cordero, E., Nicola, F., Rodino, L.: Integral representations for the class of generalized metaplectic operators. J. Fourier Anal. Appl. 21, 694–714 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Cordero, E., Nicola, F., Rodino, L.: Wave packet analysis of Schrödinger equations in analytic function spaces. Adv. Math. 278, 182–209 (2015). doi: 10.1016/j.aim.2015.03.014 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Cordero, E., Nicola, F., Rodino, L.: Exponentially sparse representations of Fourier integral operators. Rev. Math. Iberoam. 31, 461–476 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Cordero, E., Tabacco, A., Wahlberg, P.: Schrödinger-type propagators, pseudodifferential operators and modulation spaces. J. Lond. Math. Soc. 88(2), 375–395 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Cordero, E., Toft, J., Wahlberg, P.: Sharp results for the Weyl product on modulation spaces. J. Funct. Anal. 267(8), 3016–3057 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    de Gosson, M.: Symplectic Methods in Harmonic Analysis and in Mathematical Physics. Birkhäuser, Basel (2011)CrossRefGoogle Scholar
  27. 27.
    Feichtinger, H.G.: Banach convolution algebras of Wiener’s type. In: Proceedings Conference Function, Series, Operators, Budapest August 1980, Colloq. Math. Soc. János Bolyai, vol. 35, pp. 509–524. North-Holland, Amsterdam (1983)Google Scholar
  28. 28.
    Feichtinger,H.G.:. Banach spaces of distributions of Wiener’s type and interpolation. In: Proceedings Conference Functional Analysis and Approximation, Oberwolfach August 1980, Internat. Ser. Numer. Math., vol. 69, pp. 153–165. Birkhäuser, Boston (1981)CrossRefGoogle Scholar
  29. 29.
    Feichtinger, H.G.: Generalized amalgams, with applications to Fourier transform. Canad. J. Math. 42(3), 395–409 (1990)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Feichtinger, H.G.: Atomic characterizations of modulation spaces through Gabor-type representations. In: Proceedings Conference Constructive Function Theory. Rocky Mountain J. Math. vol. 19, pp. 113–126 (1989)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Gröchenig, K.: Time-frequency analysis of Sjöstrand’s Class. Rev. Mat. Iberoam. 22(2), 703–724 (2006)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2001)CrossRefGoogle Scholar
  33. 33.
    Gröchenig, K., Heil, C.: Modulation spaces and pseudodifferential operators. Integral Equ. Oper. Theory 34(4), 439–457 (1999)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Hörmander, L.H.: The analysis of linear partial differential operators. III, volume 274 of Grundlehren der Mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences. Springer-Verlag, Berlin (1994)Google Scholar
  35. 35.
    Labate, D.: Pseudodifferential operators on modulation spaces. J. Math. Anal. Appl. 262, 242–255 (2001)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Lieb, L.H.: Integral bounds for radar ambiguity functions and Wigner distributions. J. Math. Phys. 31(3), 625–630 (1990)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Sjöstrand, J.: An algebra of pseudodifferential operators. Math. Res. Lett. 1, 185–192 (1994)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Sugimoto, M., Tomita, N.: Boundedness properties of pseudo-differential operators and Calderòn-Zygmund operators on modulation spaces. J. Fourier Anal. Appl. 14(1), 124143 (2008)CrossRefGoogle Scholar
  39. 39.
    Toft, J.: Continuity properties for modulation spaces, with applications to pseudo-differential calculus. I. J. Funct. Anal. 207(2), 399–429 (2004)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Toft, J.: Continuity properties for modulation spaces, with applications to pseudo-differential calculus. II. Ann. Global Anal. Geom. 26(1), 73–106 (2004)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Weyl, H.: Quantenmechanik und Gruppentheories. Zeitschrift fur Physik 46, 1–46 (1927)CrossRefGoogle Scholar
  42. 42.
    Wong, M.W.: Weyl Transforms. Springer, Berlin (1998)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di TorinoTurinItaly

Personalised recommendations