Equivalence of K-functionals and modulus of smoothness generated by a Bessel type operator on the interval [0, 1]

  • S. El OuadihEmail author
  • R. Daher


The purpose of this article is to establish the equivalence between a K-functional and a modulus of smoothness generated by a Bessel type operator on the interval [0, 1] in the metrics of \(\mathbb {L}_{2}\) with a certain weight.


Fourier–Bessel series Generalized translation operator K-Functionals Modulus of smoothness 

Mathematics Subject Classification

41A36 44A20 


  1. 1.
    Bray, W.O., Pinsky, M.A.: Growth properties of the Fourier transform, arXiv:0910.1115v1 [math.CA] 6 Oct (2009)
  2. 2.
    Peetre, J.: A theory of interpolation of normed spaces. Notes de Universidade de Brasilia, pp. 88, Brasilia (1963)Google Scholar
  3. 3.
    Berens, H., Buter, P.L.: Semigroups of operators and approximation. In: Grundlehren der mathematischen Wissenschaften, vol. 145, pp. XII, 322. Springer, Berlin (1967)Google Scholar
  4. 4.
    Vladimirov, V.S.: Equations of Mathematical Physics. Marcel Dekker, New York (1971)zbMATHGoogle Scholar
  5. 5.
    Levitan, B.M., Sargsjan, I.S.: Introduction to Spectral Theory: Self-Adjoint Ordinary Differential Operators. Am. Math. Soc, Providence, R.I. (1975)CrossRefGoogle Scholar
  6. 6.
    Nikol’skii, S.M.: Approximation of Functions in Several Variables and Embedding Theorems. Nauka, Moscow (1977). [in Russian]Google Scholar
  7. 7.
    Levitan, B.M.: Expansion in Fourier series and integrals with Bessel functions. Usp. Mat. Nauk 6(2), 102–143 (1951)MathSciNetGoogle Scholar
  8. 8.
    Löfstróom, J., Peetre, J.: Approximation theorems connected with generalized translations. Math. Ann. 181, 255–268 (1969)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ditzian, Z., Totik, V.: Moduli of smoothness. Springer-Verlag, UK (1987)CrossRefGoogle Scholar
  10. 10.
    Belkina, E.S., Platonov, S.S.: Equivalence of K-functionals and modulus of smoothness constructed by generalized dunkl translations. Izv. Vyssh. Uchebn. Zaved. Mat. 8, 315 (2008)zbMATHGoogle Scholar
  11. 11.
    Dai, F.: Some equivalence theorems with K-functionals. J. Appr. Theory 121, 143–157 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Nikol’skii, S.M.: A generalization of an inequality of S. N. Bernstein. Dokl. Akad. Nauk. SSSR 60(9), 1507–1510 (1948). (Russian)Google Scholar
  13. 13.
    Timan, A.F.: Theory of approximation of functions of a real variable, Fizmatgiz, Moscow, 1960. Pergamon Press, Oxford-New York, English transl (1963)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Sciences Aïn ChockUniversity Hassan IICasablancaMorocco

Personalised recommendations