Uncertainty principles for spherical mean \(L^2\)-multiplier operators

  • Khaled HleiliEmail author


We study the spherical mean \(L^2\)-multiplier operators, and for these operators we establish the Heisenberg–Pauli–Weyl uncertainty principle and Donoho–Stark’s uncertainty principle.


Spherical mean operator \(L^2\)-multiplier operators Heisenberg–Pauli–Weyl uncertainty principle Concentration uncertainty principle 

Mathematics Subject Classification

43A32 42B10 


  1. 1.
    Andrews, G., Askey, R., Roy, R.: Special Functions. Cambridge Univ. Press, New York (1999)CrossRefzbMATHGoogle Scholar
  2. 2.
    Cowling, M.G., Price, J.F.: Generalizations of Heisenberg’s inequality in Harmonic Analysis,(Cortona, 1982). Lecture Notes in Math, vol. 992, pp. 443–449. Springer, Berlin. MR 0729369(86g :42002b) (1983)Google Scholar
  3. 3.
    Daher, R., Khadari, A., Omri, S.: Uncertainty principle for the spherical mean operator. J. Math. Inequal. 8(3), 475–487 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Donoho, D.L., Stark, P.B.: Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49(3), 906–931 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fawcett, J.A.: Inversion of N-dimensional spherical means. SIAM. J. Appl. Math. 45, 336–341 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hardy, G.H.: A theorem concerning Fourier transforms. J. Lond. Math. Soc. 8, 227–231 (1933)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Helesten, H., Anderson, L.E.: An inverse method for the processing of synthetic aperture radar data. Inverse Probl. 4, 111–124 (1987)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Herberthson, M.: A numerical implementation of an inverse formula for CARABAS raw Data. Internal Report D 30430-3.2, National Defense Research Institute, FOA, Box 1165; S-581 11, Linköping, Sweden (1986)Google Scholar
  9. 9.
    Hleili, K., Omri, S., Rachdi, L.T.: Uncertainty principle for the Riemann–Liouville operator. CUBO A M. J. 13(N03), 91–115 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lebedev, N.N.: Special Functions and Their Applications. Dover publications, New York (1972)zbMATHGoogle Scholar
  11. 11.
    Morgan, G.W.: A note on Fourier transforms. J. Lond. Math. Soc. 9, 178–192 (1934)MathSciNetGoogle Scholar
  12. 12.
    Msehli, N., Rachdi, L.T.: Beurling–Hormander uncertainty principle for the spherical mean operator. J. Inequal. Pure Appl. Math. 10, 2 (2009)zbMATHGoogle Scholar
  13. 13.
    Msehli, N., Rachdi, L.T.: Heisenberg–Pauli–Weyl uncertainty principle for the spherical mean operator. Mediterr. J. Math. 7, 169–194 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Nessibi, M.M., Rachdi, L.T., Trimèche, K.: Ranges and inversion formulas for spherical mean operator and its dual. J. Math. Anal. Appl. 196(3), 861–884 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Omri, S.: Uncertainty principle in terms of entropy for the spherical mean operator. J. Math. Inequal. 5(4), 473–490 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Omri, S., Rachdi, L.T.: An \(L^p\)-\(L^q\) version of Morgan’s theorem associated wih Riemann–Liouville transform. Int. J. Math. Anal. 1, 805–824 (2007)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Schuster, T.: The method of approximate inverse: theory and applications. Lecture Notes in Math, vol. 1906. (2007)Google Scholar
  18. 18.
    Soltani, F.: Best approximation formulas for the Dunkl L2-multiplier operators on Rd. Rocky Mt. J. Math. 42, 305–328 (2012)CrossRefzbMATHGoogle Scholar
  19. 19.
    Soltani, F.: Multiplier operators and extremal functions related to the dual Dunkel–Sonine operator. Acta Math. Sci. Ser. B 33(2), 430–442 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Trimèche, K.: Transformation intégrale de Weyl et théorème de Paley–Wiener associés à un opérateur différentiel singulier sur \((0,\infty )\). J. Math. Pures Appl. 60, 51–98 (1981)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Trimèche, K.: Inversion of the Lions translation operator using genaralized wavelets. Appl. Comput. Harmonic Anal. 4, 97–112 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wang, L.V.: Photoacoustic Imaging and Spectroscopy. In: Optical Science and Engineering, vol. 144, p. 518. CRC Press, Taylor and Francis Group, Boca Raton (2009)Google Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Department of MathematicsPreparatory Institute for Engineering Studies of KairouanKairouanTunisia

Personalised recommendations