Carcinoid Syndrome: Updates and Review of Current Therapy

  • Kira Oleinikov
  • Shani Avniel-Polak
  • David J. Gross
  • Simona Grozinsky-GlasbergEmail author
Neuroendocrine Cancers (JR Strosberg, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Neuroendocrine Cancers

Opinion statement

Carcinoid syndrome (CS) is a complex disorder caused by functional neuroendocrine tumors (NETs). This debilitating disease is characterized by hyper-secretion of biologically active substances eliciting major hormonal symptoms burden and fibrotic changes that are often challenging for management. There have been a number of insights that have substantially advanced treatments since the introduction of somatostatin analogs (SSAs). Second-line treatments are needed in a substantial proportion of patients with advanced disease that have uncontrolled hormone secretion on the highest labeled doses of SSAs. International guidelines suggest several available options including dose escalation of SSAs, interferon alpha, everolimus, radionuclide therapy, liver-directed therapies, and the novel tryptophan hydroxylase 1 inhibitor, telotristat ethyl. The clear preference of one second-line therapy over the other is not stated since their relative and long-term efficacy are largely unknown, and standardized approach of hormonal response assessment is lacking in the literature. In the clinical setting, the treatment of CS is guided in conjunction with patients’ performance status, tumor origin, grade, stage, and growth rate, with regard to both anti-hormonal, as well as anti-proliferative effect. There is an unmet need for further well-designed randomized placebo-controlled and head-to-head studies that systematically assess CS symptom control and biochemical response following a specific intervention.


Treatment Neuroendocrine Carcinoid syndrome 


Compliance with Ethical Standards

Conflict of Interest

Kira Oleinikov, Shani Avniel-Polak, David J. Gross, and Simona Grozinsky-Glasberg declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Jensen RT, Norton JA, Oberg K. In: Feldman M, Friedman LS, Brandt LJ, editors. Neuroendocrine tumors in Sleisenger and Fordtran’s gastrointestinal and liver diseases, edn tenth. Philadelphia: Elsevier Saunders; 2016. p. 501–41.Google Scholar
  2. 2.
    Boutzios G, Kaltsas G. Clinical syndromes related to gastrointestinal neuroendocrine neoplasms. Front Horm Res. 2015;44:40–57.PubMedCrossRefGoogle Scholar
  3. 3.
    Van Der Lely AJ, Herder WW. Carcinoid syndrome: diagnosis and medical management. Arq Bras Endocrinol Metabol. 2005;49(5):850–60.PubMedCrossRefGoogle Scholar
  4. 4.
    • Halperin DM, Shen C, Dasari A, et al. Frequency of carcinoid syndrome at neuroendocrine tumour diagnosis: a population-based study. Lancet Oncol. 2017;18:525–34. Recent extensive study on the frequency and epidiomology of carcinoid syndrome. A population-based analysis focusing on epidemiology, clinical characteristics and survival of carcinoid syndrome patients.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Dasari A, Shen C, Halperin D, et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 2017.Google Scholar
  6. 6.
    Druce M, Rockall A, Grossman AB. Fibrosis and carcinoid syndrome: from causation to future therapy. Nat Rev Endocrinol. 2009;5(5):276.PubMedCrossRefGoogle Scholar
  7. 7.
    Ardill JE, Armstrong L, Smye M, et al. Neuroendocrine tumours of the small bowel: interpretation of raised circulating chromogranin A, urinary 5 hydroxy indole acetic acid and circulating neurokinin A. QJM. 2016;109:111–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Tohmola N, Itkonen O, Sane T, et al. Analytical and preanalytical validation of a new mass spectrometric serum 5-hydroxyindoleacetic acid assay as neuroendocrine tumor marker. Clin Chim Acta. 2014;428:38–43.PubMedCrossRefGoogle Scholar
  9. 9.
    Adaway JE, Dobson R, Walsh J, et al. Serum and plasma 5-hydroxyindoleacetic acid as an alternative to 24-h urine 5-hydroxyindoleacetic acid measurement. Ann Clin Biochem. 2016;53:554–60.PubMedCrossRefGoogle Scholar
  10. 10.
    Tellez MR, Mamikunian G, O’Dorisio TM, et al. A single fasting plasma 5-HIAA value correlates with 24-hour urinary 5-HIAA values and other biomarkers in midgut neuroendocrine tumors (NETs). Pancreas. 2013;42:405–10.PubMedCrossRefGoogle Scholar
  11. 11.
    Chuang CC, Bhurke S, Chen SY, Brulais S, Gabriel S. Clinical characteristics, treatment patterns, and economic burden in patients treated for neuroendocrine tumors in the United States: a retrospective cohort study. J Med Econ. 2015;18(2):126–36.PubMedCrossRefGoogle Scholar
  12. 12.
    Fröjd C, Larsson G, Lampic C, Von Essen L. Health related quality of life and psychosocial function among patients with carcinoid tumours. A longitudinal, prospective, and comparative study. Health Qual Life Outcomes. 2007;5(1):18.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Broder MS, Chang E, Romanus D, Cherepanov D, Neary MP. Healthcare and economic impact of diarrhea in patients with carcinoid syndrome. World Journal of Gastroenterol. 2016;22(6):2118.CrossRefGoogle Scholar
  14. 14.
    Modlin IM, Bodei L, Kidd M. Neuroendocrine tumor biomarkers: from monoanalytes to transcripts and algorithms. Best Pract Res Clin Endocrinol Metabol. 2016;30(1):59–77.CrossRefGoogle Scholar
  15. 15.
    Laval VR, Pavel M, Steffen IG, Baur AD, Dilz LM, Fischer C, et al. Mesenteric fibrosis in midgut neuroendocrine tumors: functionality and radiological features. Neuroendocrinology. 2018;106(2):139–47.Google Scholar
  16. 16.
    Laskaratos FM, Rombouts K, Caplin M, Toumpanakis C, Thirlwell C, Mandair D. Neuroendocrine tumors and fibrosis: an unsolved mystery? Cancer. 2017;123(24):4770–90.PubMedCrossRefGoogle Scholar
  17. 17.
    Grozinsky-Glasberg S, Grossman AB, Gross DJ. Carcinoid heart disease: from pathophysiology to treatment—‘Something in the Way It Moves’. Neuroendocrinology. 2015;101:263–73.PubMedCrossRefGoogle Scholar
  18. 18.
    •• Davar J, Connolly HM, Caplin ME, Pavel M, Zacks J, Bhattacharyya S, et al. Diagnosing and managing carcinoid heart disease in patients with neuroendocrine tumors: an expert statement. J Am Coll Cardiol. 2017;69(10):1288–304. A multidisciplinary consensus statement on management of carcinoid heart disease based on an evidence-based review of the published data and on the expert opinion.Google Scholar
  19. 19.
    Dobson R, Burgess MI, Banks M, Pritchard DM, Vora J, Valle JW, et al. The association of a panel of biomarkers with the presence and severity of carcinoid heart disease: a cross-sectional study. PLoS One. 2013;8(9):e73679.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Pavel M, Costa F, Capdevila J, Gross D, Kianmanesh R, Krenning E, et al. ENETS consensus guidelines update for the management of distant metastatic disease of intestinal, pancreatic, bronchial neuroendocrine neoplasms (NEN) and NEN of unknown primary site. Neuroendocrinology. 2016;103(2):172–85.PubMedCrossRefGoogle Scholar
  21. 21.
    Strosberg JR, Halfdanarson TR, Bellizzi AM, Chan JA, Dillon J, Heaney AP, et al. The North American Neuroendocrine Society (NANETS) consensus guidelines for surveillance and medical management of midgut neuroendocrine tumors. Pancreas. 2017;46(6):707.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Dimitriadis GK, Weickert MO, Randeva HS, Kaltsas G, Grossman A. Medical management of secretory syndromes related to gastroenteropancreatic neuroendocrine tumours. Endocr Relat Cancer. 2016;23(9):R423–36.PubMedCrossRefGoogle Scholar
  23. 23.
    Qureshi SA, Burch N, Druce M, Hattersley JG, Khan S, Gopalakrishnan K, et al. Screening for malnutrition in patients with gastro-entero-pancreatic neuroendocrine tumours: a cross-sectional study. BMJ Open. 2016;6(5):e010765.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Maasberg S, Knappe-Drzikova B, Vonderbeck D, Jann H, Weylandt KH, Grieser C, et al. Malnutrition predicts clinical outcome in patients with neuroendocrine neoplasia. Neuroendocrinology. 2017;104(1):11–25.PubMedCrossRefGoogle Scholar
  25. 25.
    Jin XF, Spampatti MP, Spitzweg C, Auernhammer CJ. Supportive therapy in gastroenteropancreatic neuroendocrine tumors: often forgotten but important. Rev Endocr Metab Disord. 2018;1:1–4.Google Scholar
  26. 26.
    Clement DS, Tesselaar ME, van Leerdam ME, Srirajaskanthan R, Ramage JK. Nutritional and vitamin status in patients with neuroendocrine neoplasms. World J Gastroenterol. 2019;25(10):1171.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Altieri B, Barrea L, Modica R, Muscogiuri G, Savastano S, Colao A, et al. Nutrition and neuroendocrine tumors: an update of the literature. Rev Endocr Metabol Disord. 2018;19(2):159–67.PubMedCrossRefGoogle Scholar
  28. 28.
    Bouma G, van Faassen M, Kats-Ugurlu G, de Vries EG, Kema IP, Walenkamp AM. Niacin (Vitamin B3) supplementation in patients with serotonin-producing neuroendocrine tumor. Neuroendocrinology. 2016;103(5):489–94.PubMedCrossRefGoogle Scholar
  29. 29.
    Barrea L, Altieri B, Muscogiuri G, Laudisio D, Annunziata G, Colao A, et al. Impact of nutritional status on gastroenteropancreatic neuroendocrine tumors (GEP-NET) aggressiveness. Nutrients. 2018;10(12):1854.PubMedCentralCrossRefGoogle Scholar
  30. 30.
    Alonso-Gordoa T, Capdevila J, Grande E. GEP–NETs UPDATE: Biotherapy for neuroendocrine tumours. Eur J Endocrinol. 2015;172(1):R31–46.PubMedCrossRefGoogle Scholar
  31. 31.
    Bousquet C, Lasfargues C, Chalabi M, Billah SM, Susini C, Vezzosi D, et al. Current scientific rationale for the use of somatostatin analogs and mTOR inhibitors in neuroendocrine tumor therapy. J Clin Endocrinol Metab. 2012;97(3):727–37.CrossRefGoogle Scholar
  32. 32.
    Caplin ME, Pavel M, Ćwikła JB, Phan AT, Raderer M, Sedláčková E, et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med. 2014;371(3):224–33.PubMedCrossRefGoogle Scholar
  33. 33.
    Pavel M, Valle JW, Eriksson B, Rinke A, Caplin M, Chen J, et al. ENETS consensus guidelines for the standards of care in neuroendocrine neoplasms: systemic therapy-biotherapy and novel targeted agents. Neuroendocrinology. 2017;105(3):266–80.PubMedCrossRefGoogle Scholar
  34. 34.
    Rinke A, Muller HH, Schade-Brittinger C, Klose KJ, Barth P, Wied M, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol. 2009;27(28):4656–63.PubMedCrossRefGoogle Scholar
  35. 35.
    Arnold R, Wittenberg M, Rinke A, Schade-Brittinger C, Aminossadati B, Ronicke E, Gress TM, Mueller HH, PROMID Study Group. Placebo controlled, double blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors (PROMID): results on long-term survival.Google Scholar
  36. 36.
    Caplin ME, Pavel M, Ćwikła JB, Phan AT, Raderer M, Sedláčková E, et al. Anti-tumour effects of lanreotide for pancreatic and intestinal neuroendocrine tumours: the CLARINET open-label extension study. Endocr Relat Cancer. 2016;23(3):191.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    • Hofland J, Martínez AD, Zandee WT, de Herder WW. Management of carcinoid syndrome: a systematic review and meta-analysis. Endocr Relat Cancer. 2019;1 A literature review and meta-analysis regarding pharmacological therapies in CS, focusing on treatment efficacy in terms of symptomatic and biochemical response.Google Scholar
  38. 38.
    Strosberg JR, Benson AB, Huynh L, Duh MS, Goldman J, Sahai V, et al. Clinical benefits of above-standard dose of octreotide LAR in patients with neuroendocrine tumors for control of carcinoid syndrome symptoms: a multicenter retrospective chart review study. Oncologist. 2014;19(9):930–6.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Al-Efraij K, Aljama MA, Kennecke HF. Association of dose escalation of octreotide long-acting release on clinical symptoms and tumor markers and response among patients with neuroendocrine tumors. Cancer Med. 2015;4(6):864–70.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Ferolla P, Faggiano A, Grimaldi F, Ferone D, Scarpelli G, Ramundo V, et al. Shortened interval of long-acting octreotide administration is effective in patients with well-differentiated neuroendocrine carcinomas in progression on standard doses. J Endocrinol Investig. 2012;35(3):326–31.Google Scholar
  41. 41.
    O’Toole D, Ducreux M, Bommelaer G, Wemeau JL, Bouché O, Catus F, et al. Treatment of carcinoid syndrome: a prospective crossover evaluation of lanreotide versus octreotide in terms of efficacy, patient acceptability, and tolerance. Cancer. 2000;88(4):770–6.Google Scholar
  42. 42.
    Wolin EM, Jarzab B, Eriksson B, Walter T, Toumpanakis C, Morse MA, et al. Phase III study of pasireotide long-acting release in patients with metastatic neuroendocrine tumors and carcinoid symptoms refractory to available somatostatin analogues. Drug Des Dev Ther. 2015;9:5075.Google Scholar
  43. 43.
    Oberg K. Interferon in the management of neuroendocrine GEP-tumors: a review. Digestion. 2000;62:92.PubMedCrossRefGoogle Scholar
  44. 44.
    Arnold R, Rinke A, Klose KJ, Müller HH, Wied M, Zamzow K, et al. Octreotide versus octreotide plus interferon-alpha in endocrine gastroenteropancreatic tumors: a randomized trial. Clin Gastroenterol Hepatol. 2005;3(8):761–71.PubMedCrossRefGoogle Scholar
  45. 45.
    Veenhof CH, de Wit R, Taal BG, Dirix LY, Wagstaff J, Hensen A, et al. A dose-escalation study of recombinant interferon-alpha in patients with a metastatic carcinoid tumour. Eur J Cancer. 1992;28(1):75–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Di Bartolomeo M, Bajetta E, Buzzoni R, Mariani L, Carnaghi C, Somma L, et al. Clinical efficacy of octreotide in the treatment of metastatic neuroendocrine tumors: a study by the Italian Trials in Medical Oncology Group. Cancer. 1996;77(2):402–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Nobin A, Lindblom A, Marnsson B, Sundberg M. Interferon treatment in patients with malignant carcinoids. Acta Oncol. 1989;28(3):445–9.PubMedCrossRefGoogle Scholar
  48. 48.
    McKinney J, Knappskog PM, Haavik J. Different properties of the central and peripheral forms of human tryptophan hydroxylase. J Neurochem. 2005;92(2):311–20.PubMedCrossRefGoogle Scholar
  49. 49.
    Amireault P, Sibon D, Côté F. Life without peripheral serotonin: insights from tryptophan hydroxylase 1 knockout mice reveal the existence of paracrine/autocrine serotonergic networks. ACS Chem Neurosci. 2012;4(1):64–71.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Heredia DJ, Gershon MD, Koh SD, Corrigan RD, Okamoto T, Smith TK. Important role of mucosal serotonin in colonic propulsion and peristaltic reflexes: in vitro analyses in mice lacking tryptophan hydroxylase 1. J Physiol. 2013;591(23):5939–57.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Engelman K, Lovenberg W, Sjoerdsma A. Inhibition of serotonin synthesis by para-chlorophenylalanine in patients with the carcinoid syndrome. N Engl J Med. 1967;277(21):1103–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Kulke MH, O’Dorisio T, Phan A, Bergsland E, Law L, Banks P, et al. Telotristat etiprate, a novel serotonin synthesis inhibitor, in patients with carcinoid syndrome and diarrhea not adequately controlled by octreotide. Endocr Relat Cancer. 2014;21(5):705–14.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    European Medicines Agency. Xermelo, INN-Telotristat. Summary of product characteristics. Available from: Accessed January, 2019.
  54. 54.
    Pavel M, Hörsch D, Caplin M, Ramage J, Seufferlein T, Valle J, et al. Telotristat etiprate for carcinoid syndrome: a single-arm, multicenter trial. J Clin Endocrinol Metab. 2015;100(4):1511–9.CrossRefGoogle Scholar
  55. 55.
    Kulke MH, Horsch D, Caplin ME, et al. Telotristat Ethyl, a tryptophan hydroxylase inhibitor for the treatment of carcinoid syndrome. J Clin Oncol. 2017;35:14–23.PubMedCrossRefGoogle Scholar
  56. 56.
    •• Pavel M, Gross DJ, Benavent M, Perros P, Srirajaskanthan R, Warner RR, et al. Telotristat ethyl in carcinoid syndrome: safety and efficacy in the TELECAST phase 3 trial. Endocr Relat Cancer. 2018;25(3):309–22 A randomized, controlled phase 3 study, assessing safety and efficacy of telotristat ethyl in CS symptomatic patients.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364(6):514–23.PubMedCrossRefGoogle Scholar
  58. 58.
    Chan J, Kulke M. Targeting the mTOR signaling pathway in neuroendocrine tumors. Curr Treat Options in Oncol. 2014;15(3):365–79.CrossRefGoogle Scholar
  59. 59.
    Yao JC, Phan AT, Chang DZ, Wolff RA, Hess K, Gupta S, et al. Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low-to intermediate-grade neuroendocrine tumors: results of a phase II study. J Clin Oncol. 2008;26(26):4311.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Pavel ME, Hainsworth JD, Baudin E, Peeters M, Hörsch D, Winkler RE, et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet. 2011;378(9808):2005–12.CrossRefGoogle Scholar
  61. 61.
    Bergsma H, van Vliet EI, Teunissen JJ, Kam BL, de Herder WW, Peeters RP, et al. Peptide receptor radionuclide therapy (PRRT) for GEP-NETs. Best Pract Res Clin Gastroenterol. 2012;26(6):867–81.CrossRefGoogle Scholar
  62. 62.
    Brabander T, Teunissen JJ, Van Eijck CH, Franssen GJ, Feelders RA, de Herder WW, et al. Peptide receptor radionuclide therapy of neuroendocrine tumours. Best Pract Res Clin Endocrinol Metab. 2016;30(1):103–14.CrossRefGoogle Scholar
  63. 63.
    Cives M, Strosberg J. Radionuclide therapy for neuroendocrine tumors. Curr Oncol Rep. 2017;19(2):9.PubMedCrossRefGoogle Scholar
  64. 64.
    •• Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376(2):125–35 A randomized, controlled trial, evaluating the efficacy and safety of lutetium-177 (177Lu)-Dotatate in patients with advanced midgut NETs, who progressed under SSA treatment.Google Scholar
  65. 65.
    Strosberg J, Wolin E, Chasen B, Kulke M, Bushnell D, Caplin M, et al. Health-related quality of life in patients with progressive midgut neuroendocrine tumors treated with 177Lu-Dotatate in the phase III NETTER-1 trial. J Clin Oncol. 2018;36(25):2578.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Foster DS, Jensen R, Norton JA. Management of liver neuroendocrine tumors in 2018. JAMA Oncol. 2018;4(11):1605–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Grozinsky-Glasberg S, Kaltsas G, Kaltsatou M, Lev-Cohain N, Klimov A, Vergadis V, et al. Hepatic intra-arterial therapies in metastatic neuroendocrine tumors: lessons from clinical practice. Endocrine. 2018;60(3):499–509.PubMedCrossRefGoogle Scholar
  68. 68.
    Sarmiento JM, Que FG. Hepatic surgery for metastases from neuroendocrine tumors. Surg Oncol Clin. 2003;12(1):231–42.CrossRefGoogle Scholar
  69. 69.
    Saxena A, Chua TC, Perera M, Chu F, Morris DL. Surgical resection of hepatic metastases from neuroendocrine neoplasms: a systematic review. Surg Oncol. 2012;21(3):e131–41.PubMedCrossRefGoogle Scholar
  70. 70.
    Eriksson J, Stålberg P, Nilsson A, Krause J, Lundberg C, Skogseid B, et al. Surgery and radiofrequency ablation for treatment of liver metastases from midgut and foregut carcinoids and endocrine pancreatic tumors. World J Surg. 2008;32(5):930–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Drougas JG, Anthony LB, Blair TK, Lopez RR, Wright JK Jr, Chapman WC, et al. Hepatic artery chemoembolization for management of patients with advanced metastatic carcinoid tumors. Am J Surg. 1998;175(5):408–12.PubMedCrossRefGoogle Scholar
  72. 72.
    Strosberg JR, Choi J, Cantor AB, Kvols LK. Selective hepatic artery embolization for treatment of patients with metastatic carcinoid and pancreatic endocrine tumors. Cancer Control. 2006;13(1):72–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Pericleous M, Caplin ME, Tsochatzis E, Yu D, Morgan-Rowe L, Toumpanakis C. Hepatic artery embolization in advanced neuroendocrine tumors: efficacy and long-term outcomes. Asia Pac J Clin Oncol. 2016;12(1):61–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Nazario J, Gupta S. Transarterial liver-directed therapies of neuroendocrine hepatic metastases. Semin Oncol. 2010;37(2):118–26 WB Saunders.Google Scholar
  75. 75.
    Pitt SC, Knuth J, Keily JM, McDermott JC, Weber SM, Chen H, et al. Hepatic neuroendocrine metastases: chemo-or bland embolization? J Gastrointest Surg. 2008;12(11):1951–60.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Osborne DA, Zervos EE, Strosberg J, Boe BA, Malafa M, Rosemurgy AS, et al. Improved outcome with cytoreduction versus embolization for symptomatic hepatic metastases of carcinoid and neuroendocrine tumors. Ann Surg Oncol. 2006;13(4):572–81.PubMedCrossRefGoogle Scholar
  77. 77.
    Fan ST, Le Treut YP, Mazzaferro V, Burroughs AK, Olausson M, Breitenstein S, et al. Liver transplantation for neuroendocrine tumour liver metastases. HPB. 2015;17(1):23–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Keskin O, Yalcin S. Carcinoid crisis in the intensive care unit. Oncol Crit Care. 2019:1–7.Google Scholar
  79. 79.
    Kwon DH, Paciorek A, Mulvey CK, Chan H, Fidelman N, Meng L, et al. Periprocedural management of patients undergoing liver resection or embolotherapy for neuroendocrine tumor metastases. Pancreas. 2019;48(4):496–503.PubMedCrossRefGoogle Scholar
  80. 80.
    Woltering EA, Wright AE, Stevens MA, Wang YZ, Boudreaux JP, Mamikunian G, et al. Development of effective prophylaxis against intraoperative carcinoid crisis. J Clin Anesth. 2016;32:189–93.PubMedCrossRefGoogle Scholar
  81. 81.
    Condron ME, Pommier SJ, Pommier RF. Continuous infusion of octreotide combined with perioperative octreotide bolus does not prevent intraoperative carcinoid crisis. Surgery. 2016;159(1):358–67.PubMedCrossRefGoogle Scholar
  82. 82.
    Massimino K, Harrskog O, Pommier S, Pommier R. Octreotide LAR and bolus octreotide are insufficient for preventing intraoperative complications in carcinoid patients. J Surg Oncol. 2013;107(8):842–6.PubMedCrossRefGoogle Scholar
  83. 83.
    • Condron ME, Jameson NE, Limbach KE, Bingham AE, Sera VA, Anderson RB, et al. A prospective study of the pathophysiology of carcinoid crisis. Surgery. 2019;165(1):158–65 A prospective study on the pathophysiology of intraoperative carcinoid crisis.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kira Oleinikov
    • 1
  • Shani Avniel-Polak
    • 1
  • David J. Gross
    • 1
  • Simona Grozinsky-Glasberg
    • 1
    Email author
  1. 1.Neuroendocrine Tumor Unit, ENETS Center of Excellence, Endocrinology and Metabolism Department, Division of MedicineHadassah-Hebrew University Medical CenterJerusalemIsrael

Personalised recommendations