Advertisement

Antibody-Drug Conjugates in Breast Cancer: a Comprehensive Review

  • Noam Pondé
  • Philippe Aftimos
  • Martine PiccartEmail author
Breast Cancer (EA Comen, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Breast Cancer

Opinion Statement

Antibody-drug conjugates are an elegant approach to cancer treatment that couples the specificity of monoclonal antibodies to the cytotoxicity of classic chemotherapy agents, permitting, at least in theory, increased activity and reduced toxicity. In breast cancer, the early success of trastuzumab-emtansine (T-DM1) in the HER2-positive metastatic setting led to great hopes, later dashed by results in the early setting (KRISTINE trial) and in combination with pertuzumab (MARIANNE trial). Parallel to this, development of ADCs in breast cancer has suffered other setbacks, including the recent failure of other agents (MM-302) as well as the suspension of a few programs (XMT-1522, ADCT-502) with the overall effect of dampening the impetus of this concept and halting/delaying the progress of drugs associated with it, particularly when immunotherapy is at the center of so many efforts. Numerous antibody-drug conjugates remain, however, in development, and could prove successful. Critically, ADCs could permit the introduction of novel concepts such as the expansion of potent anti-HER2 therapy to HER2-low breast cancer, treatment beyond resistance to T-DM1, and synergy in combination with immune checkpoint blockade. In the early setting, the ATEMPT trial may show that T-DM1 reduces toxicity while maintaining good outcomes for lower risk HER2+ patients. ADCs based on bispecific antibodies are also in development. Finally, breakthroughs are occurring in the orphan triple-negative breast cancer subtype with agents targeting surface proteins. The recent results of Sacituzumab govitecan suggest substantial activity in heavily pre-treated patients and underscore the enduring relevance of antibody drug conjugates as a path towards better outcomes.

Keywords

Breast cancer Antibody-drug conjugates T-DM1 Sacituzumab govitecan DS–8201a SYD0985 

Notes

Compliance with Ethical Standards

Conflict of Interest

Noam Pondé has received travel support from Roche/Genentech, Janssen-Cilag, and Mundipharma, as well as speaker’s fees from Mundipharma. The institute he works for has received research funding from AstraZeneca, Lilly, MSD, Novartis, Pfizer, Roche-Genentech, Synthon, Radius, and Servier. Philippe Aftimos has received travel support from Roche, MSD, and Amgen; consulting fees from Synthon, Boehringer/Ingleheim, and Macrogenics; and speaker Fees from Amgen and Novartis. The institute he works for has received research funding from AstraZeneca, Lilly, MSD, Novartis, Pfizer, Roche-Genentech, Synthon, Radius, and Servier. Martine Piccart is a board member of Radius. She has received honoraria as a consultant from AstraZeneca, Lilly, MSD, Novartis, Odonate, Pfizer, Roche-Genentech, Camel-IDS, Crescendo Biologics, Periphagen, Huya, Debiopharm, PharmaMar, G1 Therapeutics, Menarini, Seattle Genetics, Immunomedics, and Oncolytics. Her institute has received research funding from AstraZeneca, Lilly, MSD, Novartis, Pfizer, Roche-Genentech, Synthon, Radius, and Servier.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Cancer of the Breast (Female) - SEER Stat Fact Sheets [Internet]. [cited 2016 Oct 24]. Available from: http://seer.cancer.gov/statfacts/html/breast.html. Accessed 15 Sept 2018.
  3. 3.
    Cardoso F, Costa A, Senkus E, Aapro M, André F, Barrios CH, et al. 3rd ESO–ESMO International Consensus Guidelines for Advanced Breast Cancer (ABC 3). Ann Oncol. 2016;mdw544.Google Scholar
  4. 4.
    Sonnenblick A, Pondé N, Piccart M. Metastatic breast cancer: the Odyssey of personalization. Mol Oncol. 2016;10(8):1147–59.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Pegram M, Hsu S, Lewis G, Pietras R, Beryt M, Sliwkowski M, et al. Inhibitory effects of combinations of HER-2/neu antibody and chemotherapeutic agents used for treatment of human breast cancers. Oncogene. 1999;18(13):2241–51.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Giansanti P, Preisinger C, Huber KVM, Gridling M, Superti-Furga G, Bennett KL, et al. Evaluating the promiscuous nature of tyrosine kinase inhibitors assessed in A431 epidermoid carcinoma cells by both chemical- and phosphoproteomics. ACS Chem Biol. 2014;9(7):1490–8.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Tolcher AW. Antibody drug conjugates: lessons from 20 years of clinical experience. Ann Oncol. 2016;27(12):2168–72.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Moek KL, de Groot DJA, de Vries EGE, Fehrmann RSN. The antibody–drug conjugate target landscape across a broad range of tumour types. Ann Oncol. 2017;28(12):3083–91.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Beck A, Goetsch L, Dumontet C, Corvaïa N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat Rev Drug Discov. 2017;16(5):315–37.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Damelin M, Zhong W, Myers J, Sapra P. Evolving strategies for target selection for antibody-drug conjugates. Pharm Res. 2015;32(11):3494–507.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Visintin A, Knowlton K, Tyminski E, Lin C-I, Zheng X, Marquette K, et al. Novel anti-TM4SF1 antibody-drug conjugates with activity against tumor cells and tumor vasculature. Mol Cancer Ther. 2015;14(8):1868–76.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Issell BF, Crooke ST. Maytansine. Cancer Treat Rev. 1978;5(4):199–207.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Cianfriglia M. The biology of MDR1-P-glycoprotein (MDR1-Pgp) in designing functional antibody drug conjugates (ADCs): the experience of gemtuzumab ozogamicin. Ann Ist Super Sanita. 2013;49(2):150–68.PubMedPubMedCentralGoogle Scholar
  15. 15.
    McCombs JR, Owen SC. Antibody drug conjugates: design and selection of linker, Payload and Conjugation Chemistry. AAPS J. 2015;17(2):339–51.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Staudacher AH, Brown MP. Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required? Br J Cancer. 2017;117(12):1736–42.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Masters JC, Nickens DJ, Xuan D, Shazer RL, Amantea M. Clinical toxicity of antibody drug conjugates: a meta-analysis of payloads. Investig New Drugs. 2018;36(1):121–35.CrossRefGoogle Scholar
  18. 18.
    Ait-Oudhia S, Zhang W, Mager DE. A mechanism-based PK/PD model for hematological toxicities induced by antibody-drug conjugates. AAPS J. 2017;19(5):1436–48.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Ravry MJ, Omura GA, Birch R. Phase II evaluation of maytansine (NSC 153858) in advanced cancer. A Southeastern Cancer Study Group trial. Am J Clin Oncol. 1985;8(2):148–50.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Lambert JM, Chari RVJ. Ado-trastuzumab emtansine (T-DM1): an antibody–drug conjugate (ADC) for HER2-positive breast cancer. J Med Chem. 2014;57(16):6949–64.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367(19):1783–91.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    •• Diéras V, Miles D, Verma S, Pegram M, Welslau M, Baselga J, et al. Trastuzumab emtansine versus capecitabine plus lapatinib in patients with previously treated HER2-positive advanced breast cancer (EMILIA): a descriptive analysis of final overall survival results from a randomised, open-label, phase 3 trial. Lancet Oncol. 2017;18(6):732–42 Updated results of the pivotal EMILIA trial. PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Welslau M, Diéras V, Sohn J-H, Hurvitz SA, Lalla D, Fang L, et al. Patient-reported outcomes from EMILIA, a randomized phase 3 study of trastuzumab emtansine (T-DM1) versus capecitabine and lapatinib in human epidermal growth factor receptor 2-positive locally advanced or metastatic breast cancer: PROs from phase 3 T-DM1 HER2+ MBC study. Cancer. 2014;120(5):642–51.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Krop IE, Kim S-B, González-Martín A, LoRusso PM, Ferrero J-M, Smitt M, et al. Trastuzumab emtansine versus treatment of physician’s choice for pretreated HER2-positive advanced breast cancer (TH3RESA): a randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15(7):689–99.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    •• Krop IE, Kim S-B, Martin AG, LoRusso PM, Ferrero J-M, Badovinac-Crnjevic T, et al. Trastuzumab emtansine versus treatment of physician’s choice in patients with previously treated HER2-positive metastatic breast cancer (TH3RESA): final overall survival results from a randomised open-label phase 3 trial. Lancet Oncol. 2017;18(6):743–54 Updated results of the pivotal TH3RESA trial.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Bartley K, Wildiers H, Kim S-B, Krop IE, Kang J, Yu R, et al. Patient-reported outcomes (PROs) from TH3RESA, a phase 3 study of trastuzumab emtansine (T-DM1) versus treatment of physician’s choice (TPC) in patients with pretreated HER2-positive advanced breast cancer. J Clin Oncol. 2014;32(26_suppl):153.CrossRefGoogle Scholar
  27. 27.
    Perez EA, Barrios C, Eiermann W, Toi M, Im Y-H, Conte P, et al. Trastuzumab emtansine with or without pertuzumab versus trastuzumab plus taxane for human epidermal growth factor receptor 2-positive, advanced breast cancer: primary results from the phase III MARIANNE study. J Clin Oncol. 2017;35(2):141–8.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    von Minckwitz G, Huang C-S, Mano MS, Loibl S, Mamounas EP, Untch M, et al. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med [Internet]. 2018 5 [cited 2018 Dec 10]; Available from: http://www.nejm.org/doi/10.1056/NEJMoa1814017. Accessed 15 Sept 2018.
  29. 29.
    Hurvitz SA, Martin M, Symmans WF, Jung KH, Huang C-S, Thompson AM, et al. Neoadjuvant trastuzumab, pertuzumab, and chemotherapy versus trastuzumab emtansine plus pertuzumab in patients with HER2-positive breast cancer (KRISTINE): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol [Internet]. 2017 Nov [cited 2017 Nov 30]; Available from: http://linkinghub.elsevier.com/retrieve/pii/S1470204517307167. Accessed 15 Sept 2018.
  30. 30.
    Burris HA, Rugo HS, Vukelja SJ, Vogel CL, Borson RA, Limentani S, et al. Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(4):398–405.CrossRefGoogle Scholar
  31. 31.
    Krop IE, LoRusso P, Miller KD, Modi S, Yardley D, Rodriguez G, et al. A phase II study of trastuzumab emtansine in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer who were previously treated with trastuzumab, lapatinib, an anthracycline, a taxane, and capecitabine. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30(26):3234–41.CrossRefGoogle Scholar
  32. 32.
    Krop IE, Beeram M, Modi S, Jones SF, Holden SN, Yu W, et al. Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(16):2698–704.CrossRefGoogle Scholar
  33. 33.
    Hurvitz SA, Dirix L, Kocsis J, Bianchi GV, Lu J, Vinholes J, et al. Phase II randomized study of trastuzumab emtansine versus trastuzumab plus docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(9):1157–63.CrossRefGoogle Scholar
  34. 34.
    • Pondé N, Brandão M, El-Hachem G, Werbrouck E, Piccart M. Treatment of advanced HER2-positive breast cancer: 2018 and beyond. Cancer Treat Rev. 2018;67:10–20 Complete overview of the current results of the field.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Swain SM, Baselga J, Kim S-B, Ro J, Semiglazov V, Campone M, et al. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med. 2015;372(8):724–34.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Fabi A, Giannarelli D, Moscetti L, Santini D, Zambelli A, Laurentiis MD, et al. Ado-trastuzumab emtansine (T-DM1) in HER2+ advanced breast cancer patients: does pretreatment with pertuzumab matter? Future Oncol. 2017;13(30):2791–7.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Vici P, Pizzuti L, Michelotti A, Sperduti I, Natoli C, Mentuccia L, et al. A retrospective multicentric observational study of trastuzumab emtansine in HER2 positive metastatic breast cancer: a real-world experience. Oncotarget. 2017 22 [cited 2018 Jul 18];8(34). Available from: http://www.oncotarget.com/fulltext/18176. Accessed 15 Sept 2018.
  38. 38.
    Conte B. Effectiveness of trastuzumab emtansine (TDM1) in patients with HER2-positive advanced breast cancer (ABC) progressing after taxane plus pertuzumab plus trastuzumab. Ann Oncol. 2018;29(suppl_8):viii90–viii121.  https://doi.org/10.1093/annonc/mdy272 ESMO 2018; Munich.CrossRefGoogle Scholar
  39. 39.
    Schneeweiss A. Ado-trastuzumab for the treatment of metastatic HER2-amplified breast cancer patients previously treated with pertuzumab. SABCS 2018; San Antonio, Texas.Google Scholar
  40. 40.
    Kim S-B, Wildiers H, Krop IE, Smitt M, Yu R, Lysbet de Haas S, et al. Relationship between tumor biomarkers and efficacy in TH3RESA, a phase III study of trastuzumab emtansine (T-DM1) vs. treatment of physician’s choice in previously treated HER2-positive advanced breast cancer: Biomarker analyses in TH3RESA. Int J Cancer. 2016;139(10):2336–42.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Badve SS, Gokmen-Polar Y, Hoersch S, Xu J, Ruschoff J, de Haas S, et al. Role of tumor infiltrating lymphocytes (TILs) in HER2+ metastatic breast cancers (MBC) treated with trastuzumab emtansine (T-DM1) or lapatinib plus capecitabine (L+C) (EMILIA Trial). J Clin Oncol. 2016;34(15_suppl):607.CrossRefGoogle Scholar
  42. 42.
    Baselga J, Lewis Phillips GD, Verma S, Ro J, Huober J, Guardino E, et al. Relationship between tumor biomarkers and efficacy in EMILIA, a phase III study of trastuzumab emtansine in HER2-positive metastatic breast cancer. Clin Cancer Res 2016 26.Google Scholar
  43. 43.
    Montemurro F, Ellis P, Delaloge S, Wuerstlein R, Anton A, Button P, et al. Safety and efficacy of trastuzumab emtansine (T-DM1) in 399 patients with central nervous system metastases: exploratory subgroup analysis from the KAMILLA study. San Antonio: SABCS; 2016.Google Scholar
  44. 44.
    Krop IE, Lin NU, Blackwell K, Guardino E, Huober J, Lu M, et al. Trastuzumab emtansine (T-DM1) versus lapatinib plus capecitabine in patients with HER2-positive metastatic breast cancer and central nervous system metastases: a retrospective, exploratory analysis in EMILIA. Ann Oncol. 2015;26(1):113–9.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Bartsch R, Berghoff AS, Vogl U, Rudas M, Bergen E, Dubsky P, et al. Activity of T-DM1 in Her2-positive breast cancer brain metastases. Clin Exp Metastasis. 2015;32(7):729–37.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Earl HM. PERSEPHONE: 6 versus 12 months (m) of adjuvant trastuzumab in patients (pts) with HER2 positive (+) early breast cancer (EBC): randomised phase 3 non-inferiority trial with definitive 4-year (yr) disease-free survival (DFS) results. Slide set. Chicago: ASCO; 2018.CrossRefGoogle Scholar
  47. 47.
    Martin M, Holmes FA, Ejlertsen B, Delaloge S, Moy B, Iwata H, et al. Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017;18(12):1688–700.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    von Minckwitz G, Procter M, de Azambuja E, Zardavas D, Benyunes M, Viale G, et al. Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer. N Engl J Med. 2017;377(2):122–31.CrossRefGoogle Scholar
  49. 49.
    Garrido-Laguna I. A phase I study of PF-06647263, a novel EFNA4-ADC, in patients with metastatic triple negative breast cancer. Chicago: ASCO; 2017.CrossRefGoogle Scholar
  50. 50.
    Xu B. An open-label, multicenter, phase Ib study to evaluate RC48-ADC in patients with HER2-positive metastatic breast cancer. Chicago: ASCO; 2018.CrossRefGoogle Scholar
  51. 51.
    Wang J. An open-label, dose-escalation phase I study to evaluate RC48-ADC, a novel antibody-drug conjugate, in patients with HER2-positive metastatic breast cancer. Chicago: ASCO; 2018.CrossRefGoogle Scholar
  52. 52.
    Sachdev JC. PF-06647020 (PF-7020), an antibody-drug conjugate (ADC) targeting protein tyrosine kinase 7 (PTK7), in patients (pts) with advanced solid tumors:r of a phase I dose escalation and expansion study. Chicago: ASCO; 2018.Google Scholar
  53. 53.
    Modi S. Phase 1 study of the antibody-drug conjugate SGN-LIV1A in patients with heavily pretreated triple-negative metastatic breast cancer. Chicago: ASCO; 2018.CrossRefGoogle Scholar
  54. 54.
    Gomez-Roca C. A phase I study of SAR566658, an anti CA6-antibody drug conjugate (ADC), in patients (Pts) with CA6-positive advanced solid tumors (STs) (NCT01156870). Chicago: ASCO; 2018.Google Scholar
  55. 55.
    Bardia A. Efficacy of sacituzumab govitecan (anti-Trop-2-SN-38 antibody-drug conjugate) for treatment-refractory hormone-receptor positive (HR+)/HER2− metastatic breast cancer (mBC). Chicago: ASCO; 2018.CrossRefGoogle Scholar
  56. 56.
    Bardia A, Mayer IA, Diamond JR, Moroose RL, Isakoff SJ, Starodub AN, et al. Efficacy and safety of anti-Trop-2 antibody drug conjugate sacituzumab govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2017;35(19):2141–8.CrossRefGoogle Scholar
  57. 57.
    Bardia A. Sacituzumab govitecan (IMMU-132), an anti-Trop-2-SN-38 antibody-drug conjugate, as ≥3rd-line therapeutic option for patients with relapsed/refractory metastatic triple-negative breast cancer (mTNBC): efficacy results. San Antonio: SABCS; 2017.Google Scholar
  58. 58.
    Burris HA. A phase I/II study of CR011 vcMMAE (CDX 011), an antibody drug conjugate, in patients with locally advanced or metastatic breast cancer. San Antonio, Texas.Google Scholar
  59. 59.
    Pegram M. 47O - Phase 1 study of bispecific HER2 antibody-drug conjugate MEDI4276 in patients with advanced HER2-positive breast or gastric cancer. Paris: TAT; 2018.Google Scholar
  60. 60.
    Iwata H. Trastuzumab deruxtecan (DS-8201a) in subjects with HER2-expressing solid tumors: long-term results of a large phase 1 study with multiple expansion cohorts. Chicago: ASCO; 2018.Google Scholar
  61. 61.
    Saura C. A phase I expansion cohorts study of SYD985 in heavily pretreated patients with HER2-positive or HER2-low metastatic breast cancer. In Chicago, IL, USA.Google Scholar
  62. 62.
    Hamilton EP. Phase 1 dose escalation of XMT-1522, a novel HER2-targeting antibody-drug conjugate (ADC), in patients (pts) with HER2-expressing breast, lung and gastric tumors. Chicago: ASCO; 2018.CrossRefGoogle Scholar
  63. 63.
    Fehrenbacher L. NSABP B-47 (NRG oncology): phase III randomized trial comparing adjuvant chemotherapy with adriamycin (A) and cyclophosphamide (C) → weekly paclitaxel (WP), or docetaxel (T) and C with or without a year of trastuzumab (H) in women with node-positive or high-risk node-negative invasive breast cancer (IBC) expressing HER2 staining intensity of IHC 1+ or 2+ with negative FISH (HER2-low IBC). In San Antonio, Texas;Google Scholar
  64. 64.
    Saura C. Primary results of LORELEI: a phase II randomised double-blind study of neoadjuvant letrozole plus taselisib versus letrozole plus placebo in postmenopausal women with ER-positive/HER2-negative early stage breast cancer. Madrid: ESMO; 2017.Google Scholar
  65. 65.
    Bardia A, Mayer IA, Vahdat LT, Tolaney SM, Isakoff SJ, Diamond JR, et al. Sacituzumab govitecan-hziy in refractory metastatic triple-negative breast cancer. N Engl J Med. 2019;380(8):741–51.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Bergstrom D. A novel, highly potent HER2-targeted antibody-drug conjugate (ADC) for the treatment of low HER2-expressing tumors and combination with trastuzumab-based regimens in HER2-driven tumors. Philadelphia: AACR; 2015.Google Scholar
  67. 67.
    Bergstrom D. XMT-1522 induces tumor regressions in preclinical models representing HER2 positive and HER2 low expressing breast cancer. San Antonio: SABCS; 2015.Google Scholar
  68. 68.
    van der Lee MMC, Groothuis PG, Ubink R, van der Vleuten MAJ, van Achterberg TA, Loosveld EM, et al. The preclinical profile of the duocarmycin-based HER2-targeting ADC SYD985 predicts for clinical benefit in low HER2-expressing breast cancers. Mol Cancer Ther. 2015;14(3):692–703.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Aftimos P. SYD985, a novel anti-HER2 ADC, shows promising activity in patients with HER2-positive and HER2-low metastatic breast cancer. San Antonio: SABCS; 2017.Google Scholar
  70. 70.
    Doi T, Iwata H, Tsurutani J, Takahashi S, Park H, Redfern CH, et al. Single agent activity of DS-8201a, a HER2-targeting antibody-drug conjugate, in heavily pretreated HER2 expressing solid tumors. J Clin Oncol. 2017;35(15_suppl):108.CrossRefGoogle Scholar
  71. 71.
    Modi S. Safety and efficacy results from a phase 1 study of DS-8201a in patients with HER2 expressing breast cancers. San Antonio: SABCS; 2017.Google Scholar
  72. 72.
    Abstract P6-17-06: Characterization, monitoring and management of interstitial lung disease in patients with metastatic breast cancer: analysis of data available from multiple studies of DS-8201a, a HER2-targeted antibody drug conjugate with a topoisomer… | Cancer Res [Internet]. [cited 2019 Feb 26]. Available from: http://cancerres.aacrjournals.org/content/79/4_Supplement/P6-17-06. Accessed 15 Sept 2018.
  73. 73.
    Reynolds JG, Geretti E, Hendriks BS, Lee H, Leonard SC, Klinz SG, et al. HER2-targeted liposomal doxorubicin displays enhanced anti-tumorigenic effects without associated cardiotoxicity. Toxicol Appl Pharmacol. 2012;262(1):1–10.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    LoRusso P, Krop I, Miller K, Ma C, Siegel BA, Shields AF, et al. Abstract CT234: a phase I study of MM-302, a HER2-targeted PEGylated liposomal doxorubicin, in patients with HER2+ metastatic breast cancer. Cancer Res. 2015;75(15 Supplement):CT234.CrossRefGoogle Scholar
  75. 75.
    Miller K, Cortes J, Hurvitz SA, Krop IE, Tripathy D, Verma S, et al. HERMIONE: a randomized phase 2 trial of MM-302 plus trastuzumab versus chemotherapy of physician’s choice plus trastuzumab in patients with previously treated, anthracycline-naïve, HER2-positive, locally advanced/metastatic breast cancer. BMC Cancer [Internet]. 2016 Dec [cited 2017 Dec 5];16(1). Available from: http://bmccancer.biomedcentral.com/articles/10.1186/s12885-016-2385-z. Accessed 15 Sept 2018.
  76. 76.
    Li JY, Perry SR, Muniz-Medina V, Wang X, Wetzel LK, Rebelatto MC, et al. A biparatopic HER2-targeting antibody-drug conjugate induces tumor regression in primary models refractory to or ineligible for HER2-targeted therapy. Cancer Cell. 2016;29(1):117–29.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Yao X, Jiang J, Wang X, Huang C, Li D, Xie K, et al. A novel humanized anti-HER2 antibody conjugated with MMAE exerts potent anti-tumor activity. Breast Cancer Res Treat. 2015;153(1):123–33.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Goldenberg DM, Stein R, Sharkey RM. The emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel cancer target. Oncotarget [Internet]. 2018 Jun 22 [cited 2018 Jul 19];9(48). Available from: http://www.oncotarget.com/fulltext/25615. Accessed 15 Sept 2018.
  79. 79.
    Ocean AJ, Starodub AN, Bardia A, Vahdat LT, Isakoff SJ, Guarino M, et al. Sacituzumab govitecan (IMMU-132), an anti-Trop-2-SN-38 antibody-drug conjugate for the treatment of diverse epithelial cancers: Safety and pharmacokinetics. Cancer. 2017;123(19):3843–54.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Rose AAN, Grosset AA, Dong Z, Russo C, MacDonald PA, Bertos NR, et al. Glycoprotein nonmetastatic B is an independent prognostic indicator of recurrence and a novel therapeutic target in breast cancer. Clin Cancer Res. 2010;16(7):2147–56.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Maric G, Annis MG, Dong Z, Rose AAN, Ng S, Perkins D, et al. GPNMB cooperates with neuropilin-1 to promote mammary tumor growth and engages integrin α5β1 for efficient breast cancer metastasis. Oncogene. 2015;34:5494–504.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Rose AAN, Biondini M, Curiel R, Siegel PM. Targeting GPNMB with glembatumumab vedotin: current developments and future opportunities for the treatment of cancer. Pharmacol Ther. 2017;179:127–41.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Bendell J, Saleh M, Rose AAN, Siegel PM, Hart L, Sirpal S, et al. Phase I/II study of the antibody-drug conjugate glembatumumab vedotin in patients with locally advanced or metastatic breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32(32):3619–25.CrossRefGoogle Scholar
  84. 84.
    Yardley DA, Weaver R, Melisko ME, Saleh MN, Arena FP, Forero A, et al. EMERGE: a randomized phase II study of the antibody-drug conjugate glembatumumab vedotin in advanced glycoprotein NMB-expressing breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33(14):1609–19.CrossRefGoogle Scholar
  85. 85.
    Vahdat LT, Forero-Torres A, Schmid P, Blackwell K, Telli ML, Melisko M, et al. Abstract P6-20-01: METRIC: a randomized international phase 2b study of the antibody-drug conjugate (ADC) glembatumumab vedotin (GV) in gpNMB-overexpressing, metastatic, triple-negative breast cancer (mTNBC). Cancer Res. 2019;79(4 Supplement):P6-20-01.Google Scholar
  86. 86.
    Taylor KM, Morgan HE, Smart K, Zahari NM, Pumford S, Ellis IO, et al. The emerging role of the LIV-1 subfamily of zinc transporters in breast cancer. Mol Med. 2007;13(7–8):396–406.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Sussman D, Smith LM, Anderson ME, Duniho S, Hunter JH, Kostner H, et al. SGN-LIV1A: a novel antibody-drug conjugate targeting LIV-1 for the treatment of metastatic breast cancer. Mol Cancer Ther. 2014;13(12):2991–3000.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Damelin M, Bankovich A, Bernstein J, Lucas J, Chen L, Williams S, et al. A PTK7-targeted antibody-drug conjugate reduces tumor-initiating cells and induces sustained tumor regressions. Sci Transl Med. 2017;9(372):eaag2611.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Lisabeth EM, Falivelli G, Pasquale EB. Eph receptor signaling and ephrins. Cold Spring Harb Perspect Biol. 2013;5(9):–a009159.Google Scholar
  90. 90.
    Barquilla A, Pasquale EB. Eph receptors and ephrins: therapeutic opportunities. Annu Rev Pharmacol Toxicol. 2015;55(1):465–87.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Damelin M, Bankovich A, Park A, Aguilar J, Anderson W, Santaguida M, et al. Anti-EFNA4 calicheamicin conjugates effectively target triple-negative breast and ovarian tumor-initiating cells to result in sustained tumor regressions. Clin Cancer Res. 2015;21(18):4165–73.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382):1350–5.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Loi S, Giobbie-Hurder A, Gombos A, Bachelot T, Hui R, Curigliano G, et al. Pembrolizumab plus trastuzumab in trastuzumab-resistant, advanced, HER2-positive breast cancer (PANACEA): a single-arm, multicentre, phase 1b–2 trial. Lancet Oncol [Internet]. 2019 Feb [cited 2019 Feb 26]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S147020451830812X. Accessed 15 Sept 2018.
  94. 94.
    Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab and Nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379(22):2108–21.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Swoboda A, Nanda R. Immune checkpoint blockade for breast cancer. Cancer Treat Res. 2018;173:155–65.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Martin K, Schreiner J, Zippelius A. Modulation of APC function and anti-tumor immunity by anti-cancer drugs. Front Immunol [Internet]. 2015 Sep 29 [cited 2018 Aug 1];6. Available from: http://journal.frontiersin.org/Article/10.3389/fimmu.2015.00501/abstract. Accessed 15 Sept 2018.
  97. 97.
    Müller P, Kreuzaler M, Khan T, Thommen DS, Martin K, Glatz K, et al. Trastuzumab emtansine (T-DM1) renders HER2+ breast cancer highly susceptible to CTLA-4/PD-1 blockade. Sci Transl Med. 2015;7(315):315ra188.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Emens LA, Esteva F, Beresford M, Saura C, Laurentiis MD, Kim S-B, et al. Abstract PD3-01: Results from KATE2, a randomized phase 2 study of atezolizumab (atezo)+trastuzumab emtansine (T-DM1) vs placebo (pbo)+T-DM1 in previously treated HER2+ advanced breast cancer (BC). Cancer Res. 2019;79(4 Supplement):PD3-01.Google Scholar
  99. 99.
    Gebhart G, Flamen P, De Vries EGE, Jhaveri K, Wimana Z. Imaging diagnostic and therapeutic targets: human epidermal growth factor receptor 2. J Nucl Med. 2016;57(Suppl 1):81S–8S.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Gebhart G, Lamberts LE, Wimana Z, Garcia C, Emonts P, Ameye L, et al. Molecular imaging as a tool to investigate heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome under trastuzumab emtansine (T-DM1): the ZEPHIR trial. Ann Oncol. 2016;27(4):619–24.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Noam Pondé
    • 1
    • 2
  • Philippe Aftimos
    • 1
  • Martine Piccart
    • 1
    Email author
  1. 1.Department of ResearchInstitut Jules Bordet; Université Libre de BruxellesBrusselsBelgium
  2. 2.AC Camargo Cancer Center, Medical Oncology DepartmentSao PauloBrazil

Personalised recommendations