Advertisement

Immunotherapy Approaches Beyond PD-1 Inhibition: the Future of Cellular Therapy for Head and Neck Squamous Cell Carcinoma

  • Hannan A. Qureshi
  • Sylvia M. LeeEmail author
Head and Neck Cancer (CP Rodriguez, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Head and Neck Cancer

Opinion statement

In a span of a few years, the surprising early successes of programmed cell death 1 (PD-1) inhibitors across a vast range of tumor types have transformed our understanding of cancer immunogenicity and provided proof of principle that T cells, if manipulated, can mediate meaningful tumor regression. In head and neck cancer, only a minority of patients respond to PD-1 therapy, but these small outcomes have fueled the enthusiasm for the next generation of immunotherapy—adoptive cell therapy—which employs recent advances in genetic engineering and cell culturing methods to generate T cells with enhanced anti-tumor efficacy for infusion back into the patient. Head and neck cancer is comprised of biologically distinct cancers, HPV-positive and HPV-negative, and the clinical responses to PD-1 inhibitors in both HPV-positive and HPV-negative head and neck patients have showcased better than any other cancer type that there are distinct pathways to immunogenicity that may lend themselves to different therapeutic approaches. Thus, head and neck cancer is uniquely poised to benefit from the personalized approach of adoptive cell therapy as well as provide a valuable platform to explore contrasting T cell modalities. In this article, we will review the growing portfolio of trials of adoptive cell therapies in head and neck cancer and discuss the future directions of this emerging new field.

Keywords

Head and neck squamous cell carcinoma Immunotherapy Tumor-infiltrating lymphocytes Chimeric antigen receptor T cell receptor Adoptive cellular therapy 

Notes

Compliance with Ethical Standards

Conflict of Interest

Hannan A. Qureshi declares that he has no conflict of interest. Sylvia M. Lee is supported by research funding (paid to her institution) by Juno Therapeutics and Iovance Biotherapeutics.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, Brenner H, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 Cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol. 2017;3(4):524–48.PubMedCrossRefGoogle Scholar
  2. 2.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.CrossRefGoogle Scholar
  3. 3.
    Blot WJ, McLaughlin JK, Winn DM, Austin DF, Greenberg RS, Preston-Martin S, et al. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res. 1988;48(11):3282–7.Google Scholar
  4. 4.
    Wyss A, Hashibe M, Chuang SC, Lee YC, Zhang ZF, Yu GP, et al. Cigarette, cigar, and pipe smoking and the risk of head and neck cancers: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. Am J Epidemiol. 2013;178(5):679–90.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Chaturvedi AK, Engels EA, Pfeiffer RM, Hernandez BY, Xiao W, Kim E, et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol. 2011;29(32):4294–301.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Ramqvist T, Dalianis T. An epidemic of oropharyngeal squamous cell carcinoma (OSCC) due to human papillomavirus (HPV) infection and aspects of treatment and prevention. Anticancer Res. 2011;31(5):1515–9.PubMedGoogle Scholar
  7. 7.
    Sturgis EM, Cinciripini PM. Trends in head and neck cancer incidence in relation to smoking prevalence: an emerging epidemic of human papillomavirus-associated cancers? Cancer. 2007;110(7):1429–35.PubMedCrossRefGoogle Scholar
  8. 8.
    Tao Y, Auperin A, Sire C, Martin L, Khoury C, Maingon P, et al. Improved outcome by adding concurrent chemotherapy to cetuximab and radiotherapy for locally advanced head and neck carcinomas: results of the GORTEC 2007–01 phase III randomized trial. J Clin Oncol. 2018;2018:JCO2017762518.Google Scholar
  9. 9.
    Vermorken JB, Mesia R, Rivera F, Remenar E, Kawecki A, Rottey S, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 2008;359(11):1116–27.PubMedCrossRefGoogle Scholar
  10. 10.
    Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-Tân PF, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363(1):24–35.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    • Fakhry C, Zhang Q, Nguyen-Tan PF, Rosenthal D, El-Naggar A, Garden AS, et al. Human papillomavirus and overall survival after progression of oropharyngeal squamous cell carcinoma. J Clin Oncol. 2014;32(30):3365–73 This randomized, phase 3 trial provided definitive evidence that T cell enhancement, using nivolumab, can achieve an overall survival benefit in HNSCC, providing proof of principle for the ongoing investigation of adoptive T cell strategies in HNSCC.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Chow LQM, Haddad R, Gupta S, Mahipal A, Mehra R, Tahara M, et al. Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results from the phase Ib KEYNOTE-012 expansion cohort. J Clin Oncol. 2016;34(32):3838–45.PubMedCrossRefGoogle Scholar
  13. 13.
    Ferris RL, Blumenschein G, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375(19):1856–67.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Ehrlich P. Über den jetzigen Stand der Karzinomforschung. Ned Tijdschr Geneeskd. 1909;5:273–90.Google Scholar
  15. 15.
    Ferris RL, Blumenschein G, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab vs investigator’s choice in recurrent or metastatic squamous cell carcinoma of the head and neck: 2-year long-term survival update of CheckMate 141 with analyses by tumor PD-L1 expression. Oral Oncol. 2018;81:45–51.PubMedCrossRefGoogle Scholar
  16. 16.
    Cohen EEW, Soulières D, Le Tourneau C, Dinis J, Licitra L, Ahn MJ, et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study. Lancet. 2019;393(10167):156–67.PubMedCrossRefGoogle Scholar
  17. 17.
    Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17(13):4550–7.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Callahan MK, Kluger H, Postow MA, Segal NH, Lesokhin A, Atkins MB, et al. Nivolumab plus ipilimumab in patients with advanced melanoma: updated survival, response, and safety data in a phase I dose-escalation study. J Clin Oncol. 2018;36(4):391–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Lee S, Margolin K. Tumor-infiltrating lymphocytes in melanoma. Curr Oncol Rep. 2012;14(5):468–74.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333(6046):1157–60.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    • Seiwert TY, Burtness B, Mehra R, Weiss J, Berger R, Eder JP, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol. 2016;17(7):956–65 This study demonstrated the clinical impact of HPV status in HNSCC on the endogenous T cell response following immune checkpoint blockade, providing guidance for future immunotherapeutic strategies.PubMedCrossRefGoogle Scholar
  23. 23.
    Mandal R, Şenbabaoğlu Y, Desrichard A, Havel JJ, Dalin MG, Riaz N, et al. The head and neck cancer immune landscape and its immunotherapeutic implications. JCI Insight. 2016;1(17):e89829.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Debets R, Donnadieu E, Chouaib S, Coukos G. TCR-engineered T cells to treat tumors: seeing but not touching? Semin Immunol. 2016;28(1):10–21.PubMedCrossRefGoogle Scholar
  25. 25.
    Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol. 2008;26(32):5233–9.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Turtle C, Hanafi L, Berger C, Sommermeyer D, Pender B, Robinson E, et al. Addition of fludarabine to cyclophosphamide lymphodepletion improves in vivo expansion of CD19 chimeric antigen receptor-modified T cells and clinical outcome in adults with B cell acute lymphoblastic leukemia. Blood. 2015;126(23):3773.Google Scholar
  27. 27.
    Donohue JH, Rosenstein M, Chang AE, Lotze MT, Robb RJ, Rosenberg SA. The systemic administration of purified interleukin 2 enhances the ability of sensitized murine lymphocytes to cure a disseminated syngeneic lymphoma. J Immunol. 1984;132(4):2123–8.PubMedGoogle Scholar
  28. 28.
    Yee C, Thompson JA, Byrd D, Riddell SR, Roche P, Celis E, et al. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci U S A. 2002;99(25):16168–73.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Stevanovic S, Helman SR, Wunderlich JR, Langhan MM, Doran SL, Kwong MM, et al. Treatment of metastatic human papillomavirus-associated epithelial cancers with adoptive transfer of tumor-infiltrating T cells. J Clin Oncol. 2018;36(suppl)abstr):3004.CrossRefGoogle Scholar
  30. 30.
    Leidner RS, Sukari A, Chung CH, Ohr J, Haigentz M, Cohen EE, et al. A phase 2, multicenter study to evaluate the efficacy and safety of autologous tumor infiltrating lymphocytes (LN-145) for the treatment of patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck (HNSCC). J Clin Oncol. 2018;36(suppl). abstr):TPS6096.CrossRefGoogle Scholar
  31. 31.
    Doran SL, Stevanovic S, Adhikary S, Gartner JJ, Jia L, Kwong MM, et al. Genetically engineered T-cell therapy for HPV-associated epithelial cancers: a first in human, phase I/II clinical trial. J Clin Oncol. 2018;36(suppl)abstr):3019.CrossRefGoogle Scholar
  32. 32.
    Hinrichs CS, Doran SL, Stevanovic S, Adhikary S, Mojadidi M, Kwong ME, et al. A phase I/II clinical trial of E6 T-cell receptor gene therapy for human papillomavirus (HPV)-associated epithelial cancers. J Clin Oncol. 2017;35(suppl)abstr):3009.CrossRefGoogle Scholar
  33. 33.
    Norberg SM, Nagarsheth N, Doran S, Kanakry JA, Adhikary S, Schweitzer C, et al. Regression of epithelial cancers following T cell receptor gene therapy targeting human papillomavirus-16 E7. Blood, 132(Suppl 1), 492.Google Scholar
  34. 34.
    Blumenschein GR, Bourgogne A, Reinhardt C, Ma H, Walter S, Weinschenk T, et al. Phase I trial evaluating genetically modified autologous T cells (ACTengine IMA201) expressing a T-cell receptor recognizing a cancer/germline antigen in patients with squamous NSCLC or HNSCC. J Clin Oncol. 2018;36(suppl 5S). abstr):TPS78.CrossRefGoogle Scholar
  35. 35.
    Lam VK, Hong DS, Heymach J, Blumenschein GR, Creelan BC, Bradbury PA, et al. Initial safety assessment of MAGE-A10 c796 TCR T-cells in two clinical trials. J Clin Oncol. 2018;36(suppl)abstr):3056.CrossRefGoogle Scholar
  36. 36.
    Papa S, Adami A, Metoudi M, Achkova D, van Schalkwyk M, Pereira AP, et al. A phase I trial of T4 CAR T-cell immunotherapy in head and neck squamous cancer (HNSCC). J Clin Oncol. 2018;36(suppl):abstr):3046.CrossRefGoogle Scholar
  37. 37.
    Straathof KC, Bollard CM, Popat U, Huls MH, Lopez T, Morriss MC, et al. Treatment of nasopharyngeal carcinoma with Epstein-Barr virus-specific T lymphocytes. Blood. 2005;105(5):1898–904.PubMedCrossRefGoogle Scholar
  38. 38.
    Comoli P, Pedrazzoli P, Maccario R, Basso S, Carminati O, Labirio M, et al. Cell therapy of stage IV nasopharyngeal carcinoma with autologous Epstein-Barr virus-targeted cytotoxic T lymphocytes. J Clin Oncol. 2005;23(35):8942–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Smith C, Tsang J, Beagley L, Chua D, Lee V, Li V, et al. Effective treatment of metastatic forms of Epstein-Barr virus-associated nasopharyngeal carcinoma with a novel adenovirus-based adoptive immunotherapy. Cancer Res. 2012;72(5):1116–25.PubMedCrossRefGoogle Scholar
  40. 40.
    Ferris RL. Immunology and immunotherapy of head and neck cancer. J Clin Oncol. 2015;33(29):3293–304.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science. 1986;233(4770):1318–21.PubMedCrossRefGoogle Scholar
  42. 42.
    Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med. 1988;319(25):1676–80.PubMedCrossRefGoogle Scholar
  43. 43.
    Kong CS, Narasimhan B, Cao H, Kwok S, Erickson JP, Koong A, et al. The relationship between human papillomavirus status and other molecular prognostic markers in head and neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys. 2009;74(2):553–61.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Ward MJ, Thirdborough SM, Mellows T, Riley C, Harris S, Suchak K, et al. Tumour-infiltrating lymphocytes predict for outcome in HPV-positive oropharyngeal cancer. Br J Cancer. 2014;110(2):489–500.PubMedCrossRefGoogle Scholar
  45. 45.
    Badoual C, Hans S, Merillon N, Van Ryswick C, Ravel P, Benhamouda N, et al. PD-1-expressing tumor-infiltrating T cells are a favorable prognostic biomarker in HPV-associated head and neck cancer. Cancer Res. 2013;73(1):128–38.PubMedCrossRefGoogle Scholar
  46. 46.
    Balermpas P, Michel Y, Wagenblast J, Seitz O, Weiss C, Rödel F, et al. Tumour-infiltrating lymphocytes predict response to definitive chemoradiotherapy in head and neck cancer. Br J Cancer. 2014;110(2):501–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Bann DV, Deschler DG, Goyal N. Novel immunotherapeutic approaches for head and neck squamous cell carcinoma. Cancers (Basel). 2016;8(10):E87.CrossRefGoogle Scholar
  48. 48.
    Nguyen N, Bellile E, Thomas D, McHugh J, Rozek L, Virani S, et al. Tumor infiltrating lymphocytes and survival in patients with head and neck squamous cell carcinoma. Head Neck. 2016;38(7):1074–84.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    deLeeuw RJ, Kost SE, Kakal JA, Nelson BH. The prognostic value of FoxP3+ tumor-infiltrating lymphocytes in cancer: a critical review of the literature. Clin Cancer Res. 2012;18(11):3022–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Lechner A, Schlößer H, Rothschild SI, Thelen M, Reuter S, Zentis P, et al. Characterization of tumor-associated T-lymphocyte subsets and immune checkpoint molecules in head and neck squamous cell carcinoma. Oncotarget. 2017;8(27):44418–33.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Sadelain M, Rivière I, Riddell S. Therapeutic T cell engineering. Nature. 2017;545(7655):423–31.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ramos CA, Narala N, Vyas GM, Leen AM, Gerdemann U, Sturgis EM, et al. Human papillomavirus type 16 E6/E7-specific cytotoxic T lymphocytes for adoptive immunotherapy of HPV-associated malignancies. J Immunother. 2013;36(1):66–76.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Hong DS, Butler MO, Sullivan RJ, Erickson-Miller CL, Trivedi T, Chagin K, et al. A phase I single arm, open label clinical trial evaluating safety of MAGE-A10c796T in subjects with advanced or metastatic head and neck, melanoma, or urothelial tumors (NCT02989064). J Clin Oncol. 2017;35(suppl). abstr):TPS3098.CrossRefGoogle Scholar
  54. 54.
    June CH, Riddell SR, Schumacher TN. Adoptive cellular therapy: a race to the finish line. Sci Transl Med. 2015;7(280):280ps7.PubMedCrossRefGoogle Scholar
  55. 55.
    Turtle CJ, Hudecek M, Jensen MC, Riddell SR. Engineered T cells for anti-cancer therapy. Curr Opin Immunol. 2012;24(5):633–9.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Rosewell Shaw A, Porter CE, Watanabe N, Tanoue K, Sikora A, Gottschalk S, et al. Adenovirotherapy delivering cytokine and checkpoint inhibitor augments CAR T cells against metastatic head and neck cancer. Mol Ther. 2017;25(11):2440–51.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Davies DM, Foster J, Van Der Stegen SJ, Parente-Pereira AC, Chiapero-Stanke L, Delinassios GJ, et al. Flexible targeting of ErbB dimers that drive tumorigenesis by using genetically engineered T cells. Mol Med. 2012;18:565–76.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Geldres C, Savoldo B, Hoyos V, Caruana I, Zhang M, Yvon E, et al. T lymphocytes redirected against the chondroitin sulfate proteoglycan-4 control the growth of multiple solid tumors both in vitro and in vivo. Clin Cancer Res. 2014;20(4):962–71.PubMedCrossRefGoogle Scholar
  59. 59.
    Papa S, Adami A, Metoudi M, Achkova D, van Schalkwyk M, Pereira AP, et al. T4 immunotherapy of head and neck squamous cell carcinoma using pan-ErbB targeted CAR T-cells. Cancer Res. 2017;77(13 Suppl). Abstract):CT118.CrossRefGoogle Scholar
  60. 60.
    Chang ET, Adami HO. The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomark Prev. 2006;15(10):1765–77.CrossRefGoogle Scholar
  61. 61.
    Stevanović S, Pasetto A, Helman SR, Gartner JJ, Prickett TD, Howie B, et al. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science. 2017;356(6334):200–5.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Otolaryngology-Head and Neck SurgeryUniversity of WashingtonSeattleUSA
  2. 2.Division of Medical Oncology, Department of MedicineUniversity of WashingtonSeattleUSA

Personalised recommendations