Advertisement

Treatment of Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia

  • Iman Abou Dalle
  • Elias Jabbour
  • Nicholas J. Short
  • Farhad RavandiEmail author
Leukemia (PH Wiernik, Section Editor)
  • 215 Downloads
Part of the following topical collections:
  1. Topical Collection on Leukemia

Opinion statement

With the introduction of tyrosine kinase inhibitors (TKIs) in the management of Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL), the prognosis of patients has improved dramatically. Currently, the standard of care in the frontline setting for fit patients is TKI in combination with chemotherapy. Age-adjusted chemotherapy or corticosteroids alone have been used with TKIs in elderly patients with comorbidities with modest long-term benefit. The primary goal of treatment is the achievement of early deep molecular remission as the achievement of complete molecular remission (CMR) at 3 months has been demonstrated to be predictive of higher long-term survival. The probability of attaining this goal by a more potent TKIs like dasatinib or ponatinib is higher, thus we recommend the use of second- or third-generation TKIs over imatinib. Clinicians should be aware of possible fatal cardiovascular events mainly related to ponatinib. Allogeneic hematopoietic stem cell transplantation (alloHSCT) should still be considered in first remission, especially for younger patients treated with imatinib combination therapy. A subset of patients achieving CMR at 3 months may be able to continue consolidation and maintenance with chemotherapy and TKI without the need for alloHSCT. Because of higher risk of relapses in the central nervous system, intrathecal chemoprophylaxis is mandatory for all patients. New strategies incorporating novel agents, such as antibody-drug conjugates, bispecific monoclonal antibodies, potent TKIs, and CAR T cells are under investigation.

Keywords

Acute lymphoblastic leukemia BCR-ABL Tyrosine kinase inhibitor Allogeneic stem cell transplantation Blinatumomab Inotuzumab 

Notes

Compliance with Ethical Standards

Conflict of Interest

Iman Abou Dalle declares that she has no conflict of interest.

Elias Jabbour has received research funding from Takeda, Pfizer, and Amgen.

Nicholas J. Short has received compensation from Takeda for service as a consultant.

Farhad Ravandi has received research funding from Bristol-Myers Squibb, honoraria from Ariad, and has served on an advisory board for Bristol-Myers Squibb.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Moorman AV, Harrison CJ, Buck GAN, Richards SM, Secker-Walker LM, Martineau M, et al. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood. 2007;109(8):3189–97.  https://doi.org/10.1182/blood-2006-10-051912.CrossRefPubMedGoogle Scholar
  2. 2.
    Burmeister T, Schwartz S, Bartram CR, Gökbuget N, Hoelzer D, Thiel E. Patients’ age and <em>BCR-ABL</em> frequency in adult B-precursor ALL: a retrospective analysis from the GMALL study group. Blood. 2008;112(3):918–9.  https://doi.org/10.1182/blood-2008-04-149,286.CrossRefPubMedGoogle Scholar
  3. 3.
    Thomas X, Boiron J-M, Huguet F, Dombret H, Bradstock K, Vey N, et al. Outcome of treatment in adults with acute lymphoblastic leukemia: analysis of the LALA-94 trial. J Clin Oncol. 2004;22(20):4075–86.  https://doi.org/10.1200/jco.2004.10.050.CrossRefPubMedGoogle Scholar
  4. 4.
    Kantarjian H, Thomas D, O’Brien S, Cortes J, Giles F, Jeha S, et al. Long-term follow-up results of hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone (Hyper-CVAD), a dose-intensive regimen, in adult acute lymphocytic leukemia. Cancer. 2004;101(12):2788–801.  https://doi.org/10.1002/cncr.20668.CrossRefPubMedGoogle Scholar
  5. 5.
    Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 1996;2(5):561–6.CrossRefGoogle Scholar
  6. 6.
    Platanias LC. Mechanisms of BCR-ABL leukemogenesis and novel targets for the treatment of chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. Leuk Lymphoma. 2011;52(Suppl 1):2–3.  https://doi.org/10.3109/10428194.2010.546922.CrossRefPubMedGoogle Scholar
  7. 7.
    Ottmann OG, Druker BJ, Sawyers CL, Goldman JM, Reiffers J, Silver RT, et al. A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias. Blood. 2002;100(6):1965–71.  https://doi.org/10.1182/blood-2001-12-0181.CrossRefPubMedGoogle Scholar
  8. 8.
    Wassmann B, Pfeifer H, Goekbuget N, Beelen DW, Beck J, Stelljes M, et al. Alternating versus concurrent schedules of imatinib and chemotherapy as frontline therapy for Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood. 2006;108(5):1469–77.  https://doi.org/10.1182/blood-2005-11-4386.CrossRefPubMedGoogle Scholar
  9. 9.
    Bassan R, Rossi G, Pogliani EM, Di Bona E, Angelucci E, Cavattoni I, et al. Chemotherapy-phased imatinib pulses improve long-term outcome of adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: Northern Italy Leukemia Group protocol 09/00. J Clin Oncol. 2010;28(22):3644–52.  https://doi.org/10.1200/jco.2010.28.1287.CrossRefPubMedGoogle Scholar
  10. 10.
    Tanguy-Schmidt A, Rousselot P, Chalandon Y, Cayuela JM, Hayette S, Vekemans MC, et al. Long-term follow-up of the imatinib GRAAPH-2003 study in newly diagnosed patients with de novo Philadelphia chromosome-positive acute lymphoblastic leukemia: a GRAALL study. Biol Blood Marrow Transplant. 2013;19(1):150–5.  https://doi.org/10.1016/j.bbmt.2012.08.021.CrossRefPubMedGoogle Scholar
  11. 11.
    Fielding AK, Rowe JM, Buck G, Foroni L, Gerrard G, Litzow MR, et al. UKALLXII/ECOG2993: addition of imatinib to a standard treatment regimen enhances long-term outcomes in Philadelphia positive acute lymphoblastic leukemia. Blood. 2014;123(6):843–50.  https://doi.org/10.1182/blood-2013-09-529008.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chalandon Y, Thomas X, Hayette S, Cayuela JM, Abbal C, Huguet F, et al. Randomized study of reduced-intensity chemotherapy combined with imatinib in adults with Ph-positive acute lymphoblastic leukemia. Blood. 2015;125(24):3711–9.  https://doi.org/10.1182/blood-2015-02-627935.CrossRefPubMedGoogle Scholar
  13. 13.
    Daver N, Thomas D, Ravandi F, Cortes J, Garris R, Jabbour E, et al. Final report of a phase II study of imatinib mesylate with hyper-CVAD for the frontline treatment of adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Haematologica. 2015;100(5):653–61.  https://doi.org/10.3324/haematol.2014.118588.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lim SN, Joo YD, Lee KH, Kim DY, Lee JH, Lee JH, et al. Long-term follow-up of imatinib plus combination chemotherapy in patients with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia. Am J Hematol. 2015;90(11):1013–20.  https://doi.org/10.1002/ajh.24137.CrossRefPubMedGoogle Scholar
  15. 15.
    Hatta Y, Mizuta S, Matsuo K, Ohtake S, Iwanaga M, Sugiura I, et al. Final analysis of the JALSG Ph+ ALL202 study: tyrosine kinase inhibitor-combined chemotherapy for Ph+ ALL. Ann Hematol. 2018;97(9):1535–45.  https://doi.org/10.1007/s00277-018-3323-8.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science (New York, NY). 2004;305(5682):399–401.  https://doi.org/10.1126/science.1099480.CrossRefGoogle Scholar
  17. 17.
    Tokarski JS, Newitt JA, Chang CY, Cheng JD, Wittekind M, Kiefer SE, et al. The structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res. 2006;66(11):5790–7.  https://doi.org/10.1158/0008-5472.Can-05-4187.CrossRefPubMedGoogle Scholar
  18. 18.
    Ottmann O, Dombret H, Martinelli G, Simonsson B, Guilhot F, Larson RA, et al. Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a phase 2 study. Blood. 2007;110(7):2309–15.  https://doi.org/10.1182/blood-2007-02-073528.CrossRefPubMedGoogle Scholar
  19. 19.
    Cortes J, Kim DW, Raffoux E, Martinelli G, Ritchie E, Roy L, et al. Efficacy and safety of dasatinib in imatinib-resistant or -intolerant patients with chronic myeloid leukemia in blast phase. Leukemia. 2008;22(12):2176–83.  https://doi.org/10.1038/leu.2008.221.CrossRefPubMedGoogle Scholar
  20. 20.
    Lilly MB, Ottmann OG, Shah NP, Larson RA, Reiffers JJ, Ehninger G, et al. Dasatinib 140 mg once daily versus 70 mg twice daily in patients with Ph-positive acute lymphoblastic leukemia who failed imatinib: results from a phase 3 study. Am J Hematol. 2010;85(3):164–70.  https://doi.org/10.1002/ajh.21615.CrossRefPubMedGoogle Scholar
  21. 21.
    • Ravandi F, O’Brien SM, Cortes JE, Thomas DM, Garris R, Faderl S, et al. Long-term follow-up of a phase 2 study of chemotherapy plus dasatinib for the initial treatment of patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Cancer. 2015;121(23):4158–64.  https://doi.org/10.1002/cncr.29646 Long term study evaluating the use of hyperCVAD chemotherapy in combination with dasatinib in the frontline treatment of Ph+ ALL.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ravandi F, Othus M, O’Brien SM, Forman SJ, Ha CS, Wong JYC, et al. US Intergroup Study of Chemotherapy Plus Dasatinib and Allogeneic Stem Cell Transplant in Philadelphia Chromosome Positive ALL. Blood Adv. 2016;1(3):250–9.  https://doi.org/10.1182/bloodadvances.2016001495.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Foà R, Vitale A, Vignetti M, Meloni G, Guarini A, De Propris MS, et al. Dasatinib as first-line treatment for adult patients with Philadelphia chromosome–positive acute lymphoblastic leukemia. Blood. 2011;118(25):6521–8.  https://doi.org/10.1182/blood-2011-05-351403.CrossRefPubMedGoogle Scholar
  24. 24.
    Chiaretti S, Vitale A, Elia L, Fedullo AL, Albino S, Piciocchi A, et al. Multicenter total therapy Gimema LAL 1509 Protocol for De Novo Adult Ph+ Acute Lymphoblastic Leukemia (ALL) Patients. Updated results and refined genetic-based prognostic stratification. Blood. 2015;126(23):81.Google Scholar
  25. 25.
    Rousselot P, Coude MM, Gokbuget N, Gambacorti Passerini C, Hayette S, Cayuela JM, et al. Dasatinib and low-intensity chemotherapy in elderly patients with Philadelphia chromosome-positive ALL. Blood. 2016;128(6):774–82.  https://doi.org/10.1182/blood-2016-02-700,153.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Weisberg E, Manley P, Mestan J, Cowan-Jacob S, Ray A, Griffin JD. AMN107 (nilotinib): a novel and selective inhibitor of BCR-ABL. Br J Cancer. 2006;94(12):1765–9.  https://doi.org/10.1038/sj.bjc.6603170.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kim DY, Joo YD, Lim SN, Kim SD, Lee JH, Lee JH, et al. Nilotinib combined with multiagent chemotherapy for newly diagnosed Philadelphia-positive acute lymphoblastic leukemia. Blood. 2015;126(6):746–56.  https://doi.org/10.1182/blood-2015-03-636548.CrossRefPubMedGoogle Scholar
  28. 28.
    Ottmann OG, Pfeifer H, Cayuela J-M, Spiekermann K, Beck J, Jung WE, et al. Nilotinib (Tasigna®) and chemotherapy for first-line treatment in elderly patients with <em>De Novo</em> Philadelphia chromosome/BCR-ABL1 positive acute lymphoblastic leukemia (ALL): a trial of the European Working Group for Adult ALL (EWALL-PH-02). Blood. 2014;124(21):798.Google Scholar
  29. 29.
    Chalandon Y, Rousselot P, Cayuela JM, Thomas X, Clappier E, Havelange V et al. Nilotinib combined with lower-intensity chemotherapy for front-line treatment of younger adults with Ph-positive acute lymphoblastic leukemia (ALL): interim analysis of the GRAAPH-2014 trial. EHA meeting. 2018.Google Scholar
  30. 30.
    Soverini S, De Benedittis C, Papayannidis C, Paolini S, Venturi C, Iacobucci I, et al. Drug resistance and BCR-ABL kinase domain mutations in Philadelphia chromosome-positive acute lymphoblastic leukemia from the imatinib to the second-generation tyrosine kinase inhibitor era: the main changes are in the type of mutations, but not in the frequency of mutation involvement. Cancer. 2014;120(7):1002–9.  https://doi.org/10.1002/cncr.28522.CrossRefPubMedGoogle Scholar
  31. 31.
    Pfeifer H, Wassmann B, Pavlova A, Wunderle L, Oldenburg J, Binckebanck A, et al. Kinase domain mutations of BCR-ABL frequently precede imatinib-based therapy and give rise to relapse in patients with de novo Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood. 2007;110(2):727–34.  https://doi.org/10.1182/blood-2006-11-052373.CrossRefPubMedGoogle Scholar
  32. 32.
    O’Hare T, Shakespeare WC, Zhu X, Eide CA, Rivera VM, Wang F, et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009;16(5):401–12.  https://doi.org/10.1016/j.ccr.2009.09.028.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cortes JE, Kim DW, Pinilla-Ibarz J, le Coutre P, Paquette R, Chuah C, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369(19):1783–96.  https://doi.org/10.1056/NEJMoa1306494.CrossRefPubMedGoogle Scholar
  34. 34.
    •• Jabbour E, Kantarjian H, Ravandi F, Thomas D, Huang X, Faderl S, et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: a single-centre, phase 2 study. Lancet Oncol. 2015;16(15):1547–55.  https://doi.org/10.1016/s1470-2045(15)00207-7 Initial results of a phase 2 trial investigating the combination of hyperCVAD chemotherapy in combination with ponatinib in the frontline therapy of Ph+ ALL. This study reported early and deep molecular responses with a 3 year overall survival approching 80%.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Short NJ, Kantarjian HM, Ravandi F, Daver NG, Pemmaraju N, Thomas DA, et al. Frontline hyper-CVAD plus ponatinib for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: Updated results of a phase II study. J Clin Oncol. 2017;35(15_suppl):7013.  https://doi.org/10.1200/JCO.2017.35.15_suppl.7013.CrossRefGoogle Scholar
  36. 36.
    Dorer DJ, Knickerbocker RK, Baccarani M, Cortes JE, Hochhaus A, Talpaz M, et al. Impact of dose intensity of ponatinib on selected adverse events: multivariate analyses from a pooled population of clinical trial patients. Leuk Res. 2016;48:84–91.  https://doi.org/10.1016/j.leukres.2016.07.007.CrossRefPubMedGoogle Scholar
  37. 37.
    •• Martinelli G, Piciocchi A, Papayannidis C, Paolini S, Robustelli V, Soverini S, et al. First report of the Gimema LAL1811 Phase II Prospective Study of the Combination of Steroids with ponatinib as frontline therapy of elderly or unfit patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2017;130(Suppl 1):99 Initial results of a phase 2 trial by the GIMEMA investigators evaluating the use of ponatinib with corticosteroids in elderly or unfit patients. This study will allow a chemotherapy-free approach for elderly patients who are unfit for intensive chemotherapy.Google Scholar
  38. 38.
    • Sasaki K, Jabbour EJ, Ravandi F, Short NJ, Thomas DA, Garcia-Manero G, et al. Hyper-CVAD plus ponatinib versus hyper-CVAD plus dasatinib as frontline therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: a propensity score analysis. Cancer. 2016;122(23):3650–6.  https://doi.org/10.1002/cncr.30231 This study indicates the superiority of hyperCVAD plus ponatinib over dasatinib in the frontline setting using a propensity score analysis.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Jabbour E, DerSarkissian M, Duh MS, McCormick N, Cheng WY, McGarry LJ, et al. Efficacy of ponatinib versus earlier generation tyrosine kinase inhibitors for front-line treatment of newly diagnosed Philadelphia-positive acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk. 2018;18(4):257–65.  https://doi.org/10.1016/j.clml.2018.02.010.CrossRefPubMedGoogle Scholar
  40. 40.
    Fielding AK, Rowe JM, Richards SM, Buck G, Moorman AV, Durrant IJ, et al. Prospective outcome data on 267 unselected adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia confirms superiority of allogeneic transplantation over chemotherapy in the pre-imatinib era: results from the International ALL Trial MRC UKALLXII/ECOG2993. Blood. 2009;113(19):4489–96.  https://doi.org/10.1182/blood-2009-01-199380.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    •• Giebel S, Labopin M, Potter M, Poire X, Sengeloev H, Socie G, et al. Comparable results of autologous and allogeneic haematopoietic stem cell transplantation for adults with Philadelphia-positive acute lymphoblastic leukaemia in first complete molecular remission: an analysis by the Acute Leukemia Working Party of the EBMT. Eur J Cancer. 2018;96:73–81.  https://doi.org/10.1016/j.ejca.2018.03.018 This is a retrospective analysis comparing autologous and allogeneic HSCT in patients with first complete molecular remission in the era of TKIs. Overall survival was comparable between the two groups.CrossRefPubMedGoogle Scholar
  42. 42.
    •• Short NJ, Jabbour E, Sasaki K, Patel K, O’Brien SM, Cortes JE, et al. Impact of complete molecular response on survival in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2016;128(4):504–7.  https://doi.org/10.1182/blood-2016-03-707562 Retrospective analysis identifying the achievment of complete molecular remission at 3 months as the only factor predictive of survival with a 4-year overall survival of 66%, without the need for alloHSCT.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Zimmerman Z, Maniar T, Nagorsen D. Unleashing the clinical power of T cells: CD19/CD3 bi-specific T cell engager (BiTE(R)) antibody construct blinatumomab as a potential therapy. Int Immunol. 2015;27(1):31–7.  https://doi.org/10.1093/intimm/dxu089.CrossRefPubMedGoogle Scholar
  44. 44.
    Topp MS, Gokbuget N, Zugmaier G, Klappers P, Stelljes M, Neumann S, et al. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32(36):4134–40.  https://doi.org/10.1200/jco.2014.56.3247.CrossRefGoogle Scholar
  45. 45.
    Topp MS, Gokbuget N, Stein AS, Zugmaier G, O’Brien S, Bargou RC, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16(1):57–66.  https://doi.org/10.1016/s1470-2045(14)71170-2.CrossRefPubMedGoogle Scholar
  46. 46.
    Kantarjian H, Stein A, Gokbuget N, Fielding AK, Schuh AC, Ribera JM, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med. 2017;376(9):836–47.  https://doi.org/10.1056/NEJMoa1609783.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    •• Martinelli G, Boissel N, Chevallier P, Ottmann O, Gokbuget N, Topp MS, et al. Complete hematologic and molecular response in adult patients with relapsed/refractory Philadelphia chromosome-positive B-precursor acute lymphoblastic leukemia following treatment with blinatumomab: results from a phase II, single-arm, multicenter study. J Clin Oncol Off J Am Soc Clin Oncol. 2017;35(16):1795–802.  https://doi.org/10.1200/jco.2016.69.3531 Phase 2 trial evaluating blinatumomab in the setting of relapsed/refractory Ph+ ALL with overall response rate of 36%. Blinatumomab was used as a bridge to alloHSCT with acceptable overall survival.CrossRefGoogle Scholar
  48. 48.
    Nagel I, Bartels M, Duell J, Oberg HH, Ussat S, Bruckmueller H, et al. Hematopoietic stem cell involvement in BCR-ABL1-positive ALL as a potential mechanism of resistance to blinatumomab therapy. Blood. 2017;130(18):2027–31.  https://doi.org/10.1182/blood-2017-05-782,888.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Assi R, Kantarjian H, Short NJ, Daver N, Takahashi K, Garcia-Manero G, et al. Safety and efficacy of blinatumomab in combination with a tyrosine kinase inhibitor for the treatment of relapsed Philadelphia chromosome-positive leukemia. Clin Lymphoma Myeloma Leuk. 2017;17(12):897–901.  https://doi.org/10.1016/j.clml.2017.08.101.CrossRefPubMedGoogle Scholar
  50. 50.
    Hanif A, Wang ES, Thompson JE, Baron JI, Walsh MD, Griffiths EA. Combining blinatumomab with targeted therapy for BCR-ABL mutant relapsed/refractory acute lymphoblastic leukemia. Leuk Lymphoma. 2018;59(8):2011–3.  https://doi.org/10.1080/10428194.2017.1411595.CrossRefPubMedGoogle Scholar
  51. 51.
    Yurkiewicz IR, Muffly L, Liedtke M. Inotuzumab ozogamicin: a CD22 mAb-drug conjugate for adult relapsed or refractory B cell precursor acute lymphoblastic leukemia. Drug Des Devel Ther. 2018;12:2293–300.  https://doi.org/10.2147/dddt.S150317.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kantarjian HM, DeAngelo DJ, Stelljes M, Martinelli G, Liedtke M, Stock W, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016;375(8):740–53.  https://doi.org/10.1056/NEJMoa1509277.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    DeAngelo DJ, Stock W, Stein AS, Shustov A, Liedtke M, Schiffer CA, et al. Inotuzumab ozogamicin in adults with relapsed or refractory CD22-positive acute lymphoblastic leukemia: a phase 1/2 study. Blood Adv. 2017;1(15):1167–80.  https://doi.org/10.1182/bloodadvances.2016001925.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Stock W, Martinelli G, Stelljes M, DeAngelo DJ, Gökbuget N, Advani AS, et al. Outcomes with inotuzumab ozogamicin (InO) in patients with Philadelphia chromosome–positive (Ph+) relapsed/refractory (R/R) acute lymphoblastic leukemia (ALL). J Clin Oncol. 2018;36(15_suppl):7030.  https://doi.org/10.1200/JCO.2018.36.15_suppl.7030.CrossRefGoogle Scholar
  55. 55.
    Jain N, Cortes JE, Ravandi F, Konopleva M, Alvarado Y, Kadia T, et al. Inotuzumab ozogamicin in combination with bosutinib for patients with relapsed or refractory Ph+ ALL or CML in lymphoid blast phase. Blood. 2017;130(Suppl 1):143.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Iman Abou Dalle
    • 1
  • Elias Jabbour
    • 1
  • Nicholas J. Short
    • 1
  • Farhad Ravandi
    • 1
    Email author
  1. 1.Department of LeukemiaThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations