Advertisement

Wuhan University Journal of Natural Sciences

, Volume 24, Issue 6, pp 479–484 | Cite as

Valuations on Concave Functions and Log-Concave Functions

  • Lijuan LiuEmail author
Mathematics
  • 6 Downloads

Abstract

Recently, the theory of valuations on function spaces has been rapidly growing. It is more general than the classical theory of valuations on convex bodies. In this paper, all continuous, SL(n) and translation invariant valuations on concave functions and log-concave functions are completely classified, respectively.

Key words

valuations concave functions log-concave functions characterization theorem 

CLC number

O 184 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ludwig M. Fisher information and matrix-valued valuations [J]. Adv Math, 2011, 226 (3): 2700–2711.CrossRefGoogle Scholar
  2. [2]
    Ludwig M. Valuations on Sobolev spaces [J]. Amer J Mat, 2012, 134 (3): 827–842.Google Scholar
  3. [3]
    Ma D. Real-valued valuations on Sobolev spaces [J]. Sci China Mat, 2016, 59 (5): 921–934.CrossRefGoogle Scholar
  4. [4]
    Ludwig M. Covariance matrices and valuations [J]. Adv in Appl Math, 2013, 51: 359–366.CrossRefGoogle Scholar
  5. [5]
    Ober M. L p -Minkowski valuations on L q-spaces [J]. J Math Anal Appl, 2014, 414 (1): 68–87.CrossRefGoogle Scholar
  6. [6]
    Tsang A. Valuations on L p-spaces [J]. Int Math Res Not, 2010, 20:3993–4023.Google Scholar
  7. [7]
    Tsang A. Minkowski valuations on L p-spaces [J]. Trans Amer Math Soc, 2012, 364 (12): 6159–6186.CrossRefGoogle Scholar
  8. [8]
    Baryshnikov Y, Ghrist R, Wright M. Hadwiger’s theorem for definable functions [J]. Adv Math, 2013, 245: 573–586.CrossRefGoogle Scholar
  9. [9]
    Alesker S. Valuations on convex functions and convex sets and Monge-Ampère operators [EB/OL]. [2017-04-02]. http://arxiv.org/pdf/1703.08778.pdf.
  10. [10]
    Cavallina L, Colesanti A. Monotone valuations on the space of convex functions [J]. Anal Geom Metr Spaces, 2015, 3 (1): 167–211.Google Scholar
  11. [11]
    Colesanti A, Ludwig M, Mussnig F. Valuations on convex functions [J]. Int Math Res Not IMRN, Oxford: Oxford Academic, 2018, DOI:  https://doi.org/10.1093/imrn/rnx189.Google Scholar
  12. [12]
    Colesanti A, Ludwig M, Mussnig F. Minkowski valuations on convex functions [J]. Cala Var Partial Differential Equations, 2017, 56:162.CrossRefGoogle Scholar
  13. [13]
    Mussnig F. Valuations on log-concave functions [EB/OL]. [2017-07-20]. https://arXiv.org/pdf/1707.06428.
  14. [14]
    Colesanti A, Lombardi N. Valuations on the space of quasi-concave functions [C] // Geometric Aspects of Functional Analysis, Lecture Notes in Mathematics 2169. Cham: Springer International Publishing, 2017: 71–105.CrossRefGoogle Scholar
  15. [15]
    Colesanti A, Lombardi N, Parapatits L. Translation invariant valuations on quasi-concave functions [J]. Studia Mathematica, 2018, 243:79–99.CrossRefGoogle Scholar
  16. [16]
    Wang T. Semi-valuations on BV(R n) [J]. Indiana Univ Math J, 2014, 63 (5): 1447–1465.CrossRefGoogle Scholar
  17. [17]
    Dal Maso G. An Introduction to Γ-Convergence, Progress in Nonlinear Differential Equations and Their Applications [M]. Boston: Birkhauser Inc, 1993.Google Scholar

Copyright information

© Wuhan University and Springer-Verlag GmbH Germany 2019

Authors and Affiliations

  1. 1.School of Mathematics and Computational ScienceHunan University of Science and TechnologyHunanChina

Personalised recommendations