Advertisement

Wuhan University Journal of Natural Sciences

, Volume 24, Issue 5, pp 427–430 | Cite as

Suppress Blackbody Radiation Shift with Two Clock Ytterbium Clock Transition

  • Jingjing Cheng
  • Kunliang Jiang
  • Lingxiang HeEmail author
Chemistry and Physics
  • 5 Downloads

Abstract

In order to suppress the blackbody radiation shift of ytterbium (Yb) lattice clock, we adopt the idea of the synthetic frequency by means of the two clock transitions which correspond to the static values of the scalar and tensor dipole polarizabilities with the AMBiT software package. We have obtained the synthetic wavelength around 647.7 nm and expected when the clock laser is working at the synthetic wavelength, the systematic uncertainty due to the BBR shift can be suppressed at the level of 10−18 or even lower.

Key words

blackbody radiation shift clock transition ytterbium atoms lattice clock 

CLC number

O 433 O 562 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    McGrew W F, Zhang X, Fasano R J, et al. Atomic clock performance beyond the geodetic limit [J]. Nature, 2018 564(87): 87–90.CrossRefGoogle Scholar
  2. [2]
    Koller S B, Grotti J, Vogt S, et al. Transportable optical lattice clock with 7×10−17 uncertainty [J]. Phys Rev Lett, 2017, 118(7): 073601.CrossRefGoogle Scholar
  3. [3]
    Bondarescu R, Schärer A, Lundgren A, et al. Ground-based optical atomic clocks as a tool to monitor vertical surface motion [J]. Geophys J Int, 2015, 202(3): 1770–1774CrossRefGoogle Scholar
  4. [4]
    Kolkowitz S, Pikovski I, Langellier N, et al. Gravitational wave detection with optical lattice atomic clocks [J]. Phys Rev D, 2016, 94(12): 124043.CrossRefGoogle Scholar
  5. [5]
    Delva P, Lodewyck J, Bilicki S, et al. Test of special relativity using a fiber network of optical clocks [J]. Phys Rev Lett, 2017, 118(22): 221102.CrossRefGoogle Scholar
  6. [6]
    Derevianko A, Pospelov M. Hunting for topological dark matter with atomic clocks [J]. Nat Phys, 2014, 10(12): 933–936.CrossRefGoogle Scholar
  7. [7]
    Safronova M S, Porsev S G, Safronova U I, et al. Blackbody-radiation shift in the Sr optical atomic clock [J]. Phys Rev A, 2013, 87(1): 012509.CrossRefGoogle Scholar
  8. [8]
    Bloom B J, Nicholson T L, Williams J R, et al. An optical lattice clock with accuracy and stability at the 10−18 level [J]. Nature, 2014, 506(7486): 71–75.CrossRefGoogle Scholar
  9. [9]
    Yudin V I, Taichenachev A V, Okhapk M V, et al. Atomic clocks with suppressed blackbody radiation shift [J]. Phys Rev Lett, 2011, 107(3): 030801.CrossRefGoogle Scholar
  10. [10]
    Safronova M S, Porsev S G, Sanner C, et al. Two clock transitions in neutral Yb for the highest sensitivity to variations of the fine-structure constant [J]. Phys Rev Lett, 2018, 120 (17): 173001.CrossRefGoogle Scholar
  11. [11]
    Dzuba V A, Flambaum V V, Schiller S. Testing physics beyond the standard model through additional clock transitions in neutral ytterbium [J]. Phys Rev A, 2018, 98(2): 022501.CrossRefGoogle Scholar
  12. [12]
    Tang Z M, Yu Y M, Dong C Z. Determination of static dipole polarizabilities of Yb atom [J]. Chin Phys B, 2018, 27 (6): 063101.CrossRefGoogle Scholar
  13. [13]
    Kahl E V, Berengut J C. AMBiT: A program for high- precision relativistic atomic structure calculations [J]. Computer Physics Communications, 2019, 238(5): 232–243.CrossRefGoogle Scholar
  14. [14]
    Dzuba V A, Flambaum V V, Kozlov M G. Combination of the many-body perturbation theory with the configuration-interaction method [J]. Phys Rev A, 1996, 54(5): 3948–3959.CrossRefGoogle Scholar
  15. [15]
    Kozlov M G, Porsev S G, Safronova M S, et al. CI-MBPT: A package of programs for relativistic atomic calculations based on a method combining configuration interaction and many-body perturbation theory [J]. Computer Physics Communications, 2015, 195 (10): 199–213.CrossRefGoogle Scholar

Copyright information

© Wuhan University and Springer-Verlag GmbH Germany 2019

Authors and Affiliations

  • Jingjing Cheng
    • 1
    • 2
  • Kunliang Jiang
    • 1
    • 2
  • Lingxiang He
    • 1
    Email author
  1. 1.State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and MathematicsChinese Academy of SciencesWuhan, HubeiChina
  2. 2.School of PhysicsUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations