Wuhan University Journal of Natural Sciences

, Volume 24, Issue 5, pp 417–422 | Cite as

Study on Defects in Fe-Doped SrTiO3 by Positron Annihilation Lifetime Spectroscopy

  • Yuanyuan Jin
  • Xiaodong Li
  • Yao Hao
  • Jingjing Li
  • Zhu WangEmail author
Chemistry and Physics


SrTi1−xFexO3−δ ceramics were prepared using a traditional solid-state reaction method. From X-ray diffraction (XRD) result, we found that the doped Fe3+ dissolved in the lattice, and no secondary phase was observed. Cation vacancies in perovskite oxides were identified via positron annihilation lifetime spectroscopy (PALS) measurements. Undoped and Fe-doped SrTiO3 ceramics and single-crystal SrTiO3 were measured by PALS at room temperature. The results show that the main defects in undoped SrTiO3 ceramics are Ti-related defects, and the isolated Ti vacancy lifetime is about 183.4 ps. With the increase of Fe3+, the concentration of the Ti vacancies decreases accompanied by the appearance of the V″SrnV o ∙∙ (defect association of Sr vacancies and multiple O vacancies) vacancy defect complexes.

Key words

defect positron annihilation lifetime spectroscopy (PALS) SrTiO3 vacancy 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ghosh V J, Nielsen B, Friessnegg T. Identifying open-volume defects in doped and undoped perovskite-type LaCoO3, PbTiO3, and BaTiO3 [J]. Physical Review B, 2000, 61(1): 207–212.CrossRefGoogle Scholar
  2. [2]
    George A M, ÍIguez J, Bellaiche L. Anomalous properties in ferroelectrics induced by atomic ordering [J]. Nature, 2001, 413(6851): 54–57.CrossRefGoogle Scholar
  3. [3]
    Noll F, Münch W, Denk I, et al. SrTiO3, as a prototype of a mixed conductor conductivities, oxygen diffusion and boundary effects [J]. Solid State Ionics, Diffusion & Reactions, 1996, 86–88(part-P2): 711–717.CrossRefGoogle Scholar
  4. [4]
    Choi G M, Tuller H L. ChemInform Abstract: Defect structure and electrical properties of single-crystal Ba0.03Sr0.97 TiO3 [J]. Journal of the American Ceramic Society, 2010, 71(4): 201–205.CrossRefGoogle Scholar
  5. [5]
    Merkle R, Maier J. Oxygen incorporation into Fe-doped SrTiO3: Mechanistic interpretation of the surface reaction [J]. Physical Chemistry Chemical Physics, 2002, 4(17): 4140–4148.CrossRefGoogle Scholar
  6. [6]
    Ohtomo A, Hwang H Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface [J]. Nature, 2004, 441(6973): 423–426.CrossRefGoogle Scholar
  7. [7]
    Qin M, Gao F, Cizek J, et al. Point defect structure of La-doped SrTiO3 ceramics with colossal permittivity [J]. Acta Materialia, 2019, 164: 76–89CrossRefGoogle Scholar
  8. [8]
    Tarun M C, Selim F A, Mccluskey M D. Persistent photoconductivity in bulk strontium titanate [J]. Physical Review Letters, 2013, 111(18): 187403.CrossRefGoogle Scholar
  9. [9]
    Gomann K, Bochardt G, Schulz M, et al. Sr diffusion in undoped and La-doped SrTiO3 single crystals under oxidizing conditions [J]. Physical Chemistry Chemical Physics, 2005, 7(9): 2053–2060.CrossRefGoogle Scholar
  10. [10]
    René Meyer, Waser R, Helmbold J, et al. Observation of vacancy defect migration in the cation sublattice of complex oxides by 18O tracer experiments [J]. Physical Review Letters, 2003, 90(10): 105901.CrossRefGoogle Scholar
  11. [11]
    Leipner H S, Hübner C G, Staab T E M, et al. Positron annihilation at dislocations and related point defects in semiconductors [J]. Physica Status Solidi, 1999, 171(1): 377–382.CrossRefGoogle Scholar
  12. [12]
    Jia C L, Urban K. Atomic-resolution measurement of oxygen concentration in oxide materials [J]. Science, 2004, 303(5666): 2001–2004.CrossRefGoogle Scholar
  13. [13]
    Tanaka T, Matsunaga K, Ikuhara Y, et al. First-principles study on structures and energetics of intrinsic vacancies in SrTiO3 [J]. Physical Review B, 2003, 2002(192): 325–330.Google Scholar
  14. [14]
    Keeble D J, Wicklein S, Dittmann R, et al. Identification of A- and B-site cation vacancy defects in perovskite oxide thin films [J]. Physical Review Letters, 2010, 105(22): 3987–3996.CrossRefGoogle Scholar
  15. [15]
    Hamid A S, Uedono A, Chikyow T, et al. Vacancy-type defects and electronic structure of perovskite-oxide SrTiO3 from positron annihilation [J]. Physica Status Solidi A-Applications and Materials Science, 2006, 203(2): 300–305.CrossRefGoogle Scholar
  16. [16]
    Shimoyama K, Kiyohara M, Kubo K, et al. Epitaxial growth of BaTiO3/SrTiO3 structures on SrTiO3 substrate with automatic feeding of oxygen from the substrate [J]. Journal of Applied Physics, 2002, 92(8): 4625–4630.CrossRefGoogle Scholar
  17. [17]
    Uedono A, Kiyohara M, Shimoyama K, et al. Vacancy-type defects in SrTiO3 probed by a monoenergetic positron beam [J]. Journal of Applied Physics, 2004, 91(8): 5307–5312.CrossRefGoogle Scholar
  18. [18]
    Tuomisto F, Makkonen I. Defect identification in semiconductors with positron annihilation: Experiment and theory [J]. Reviews of Modern Physics, 2013, 85(4): 1583–1631.CrossRefGoogle Scholar
  19. [19]
    Keeble D J, Mackie R A, Egger W, et al. Identification of vacancy defects in a thin film perovskite oxide [J]. Physical Review B, 2010, 81(6): 064102.CrossRefGoogle Scholar
  20. [20]
    Claus J, Leonhardt M, Maier J. Tracer diffusion and chemical diffusion of oxygen in acceptor doped SrTiO3 [J]. Journal of the Physics and Chemistry of Solids, 2000, 61(8): 1199–1207.CrossRefGoogle Scholar
  21. [21]
    Helmbold J, Borchardt G, Meyer R, et al. Defects and Surface-Induced Effects in Advanced Perovskites [M]. Heidelberg: Springer-Verlag, 2000.Google Scholar
  22. [22]
    Jung W C, Tuller H L. Impedance study of SrTi1−xFe xO3−δ, (x=0.05 to 0.80) mixed ionic-electronic conducting model cathode [J]. Solid State Ionics, 2009, 180(11):843–847.CrossRefGoogle Scholar
  23. [23]
    Moos R, Hardtl K H. Defect chemistry of donor-doped and undoped strontium titanate ceramics between 1 000 °C and 1400 C [J]. Journal of the American Ceramic Society, 1997, 80(10): 2549–2562.CrossRefGoogle Scholar
  24. [24]
    Denk I, Wolfram Münch, Maier J. Partial conductivities in SrTiO3: Bulk polarization experiments, oxygen concentration cell measurements, and defect-chemical modeling [J]. Journal of the American Ceramic Society, 1995, 78(12): 3265–3272.CrossRefGoogle Scholar
  25. [25]
    Shi T, Chen Y, Guo X. Defect chemistry of alkaline earth metal (Sr/Ba) titanates [J]. Progress in Materials Science, 2016, 80: 77–132.CrossRefGoogle Scholar
  26. [26]
    Guo X, Fleig J, Maier J. Determination of electronic and ionic partial conductivities of a grain boundary: method and application to acceptor-doped SrTiO3 [J]. Solid State Ionics, 2002, 154(12):563–569.CrossRefGoogle Scholar
  27. [27]
    De Souza R A, Fleig J, Merkle R, et al. SrTiO3: A model electroceramic [J]. Zeitschrift Für Metallkunde, 2013, 94(3): 218–225.CrossRefGoogle Scholar
  28. [28]
    Yoo H I, Oh T S, Kwon H S, Electrical conductivity-defect structure correlation of variable-valence and fixed-valence acceptor-doped BaTiO3 in quenched state [J]. Physical Chemistry Chemical Physics, 2009, 11(17): 3115–3126.CrossRefGoogle Scholar
  29. [29]
    Mangalam R V, Chakrabrati M, Sanyal D, et al. Identifying defects in multiferroic nanocrystalline BaTiO3 by positron annihilation techniques [J]. Journal of Physics Condensed Matter An Institute of Physics Journal, 2009, 21(44): 445902.CrossRefGoogle Scholar
  30. [30]
    Mackie R A, Singh S, Laverock J, et al. Vacancy defect positron lifetimes in strontium titanate [J]. Physical Review B, 2009, 79(1): 014102.CrossRefGoogle Scholar
  31. [31]
    Akhtar M J, Akhtar Z U N, Jackson R A, et al. Computer simulation studies of strontium titanate [J]. Journal of the American Ceramic Society, 1995, 78(2): 421–428.CrossRefGoogle Scholar
  32. [32]
    Singh S, Mcguire S. Cation vacancies in ferroelectric PbTiO3 and Pb(Zr,Ti)O3 [J]. Physical Review B, 2007, 76(14): 4109.Google Scholar

Copyright information

© Wuhan University and Springer-Verlag GmbH Germany 2019

Authors and Affiliations

  • Yuanyuan Jin
    • 1
  • Xiaodong Li
    • 1
  • Yao Hao
    • 1
  • Jingjing Li
    • 1
  • Zhu Wang
    • 1
    Email author
  1. 1.Key Laboratory of Nuclear Solid State Physics Hubei Province/School of Physics and TechnologyWuhan UniversityWuhan, HubeiChina

Personalised recommendations