Advertisement

Wuhan University Journal of Natural Sciences

, Volume 24, Issue 5, pp 417–422 | Cite as

Study on Defects in Fe-Doped SrTiO3 by Positron Annihilation Lifetime Spectroscopy

  • Yuanyuan Jin
  • Xiaodong Li
  • Yao Hao
  • Jingjing Li
  • Zhu WangEmail author
Chemistry and Physics
  • 1 Downloads

Abstract

SrTi1−xFexO3−δ ceramics were prepared using a traditional solid-state reaction method. From X-ray diffraction (XRD) result, we found that the doped Fe3+ dissolved in the lattice, and no secondary phase was observed. Cation vacancies in perovskite oxides were identified via positron annihilation lifetime spectroscopy (PALS) measurements. Undoped and Fe-doped SrTiO3 ceramics and single-crystal SrTiO3 were measured by PALS at room temperature. The results show that the main defects in undoped SrTiO3 ceramics are Ti-related defects, and the isolated Ti vacancy lifetime is about 183.4 ps. With the increase of Fe3+, the concentration of the Ti vacancies decreases accompanied by the appearance of the V″SrnV o ∙∙ (defect association of Sr vacancies and multiple O vacancies) vacancy defect complexes.

Key words

defect positron annihilation lifetime spectroscopy (PALS) SrTiO3 vacancy 

CLC number

O57 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ghosh V J, Nielsen B, Friessnegg T. Identifying open-volume defects in doped and undoped perovskite-type LaCoO3, PbTiO3, and BaTiO3 [J]. Physical Review B, 2000, 61(1): 207–212.CrossRefGoogle Scholar
  2. [2]
    George A M, ÍIguez J, Bellaiche L. Anomalous properties in ferroelectrics induced by atomic ordering [J]. Nature, 2001, 413(6851): 54–57.CrossRefGoogle Scholar
  3. [3]
    Noll F, Münch W, Denk I, et al. SrTiO3, as a prototype of a mixed conductor conductivities, oxygen diffusion and boundary effects [J]. Solid State Ionics, Diffusion & Reactions, 1996, 86–88(part-P2): 711–717.CrossRefGoogle Scholar
  4. [4]
    Choi G M, Tuller H L. ChemInform Abstract: Defect structure and electrical properties of single-crystal Ba0.03Sr0.97 TiO3 [J]. Journal of the American Ceramic Society, 2010, 71(4): 201–205.CrossRefGoogle Scholar
  5. [5]
    Merkle R, Maier J. Oxygen incorporation into Fe-doped SrTiO3: Mechanistic interpretation of the surface reaction [J]. Physical Chemistry Chemical Physics, 2002, 4(17): 4140–4148.CrossRefGoogle Scholar
  6. [6]
    Ohtomo A, Hwang H Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface [J]. Nature, 2004, 441(6973): 423–426.CrossRefGoogle Scholar
  7. [7]
    Qin M, Gao F, Cizek J, et al. Point defect structure of La-doped SrTiO3 ceramics with colossal permittivity [J]. Acta Materialia, 2019, 164: 76–89CrossRefGoogle Scholar
  8. [8]
    Tarun M C, Selim F A, Mccluskey M D. Persistent photoconductivity in bulk strontium titanate [J]. Physical Review Letters, 2013, 111(18): 187403.CrossRefGoogle Scholar
  9. [9]
    Gomann K, Bochardt G, Schulz M, et al. Sr diffusion in undoped and La-doped SrTiO3 single crystals under oxidizing conditions [J]. Physical Chemistry Chemical Physics, 2005, 7(9): 2053–2060.CrossRefGoogle Scholar
  10. [10]
    René Meyer, Waser R, Helmbold J, et al. Observation of vacancy defect migration in the cation sublattice of complex oxides by 18O tracer experiments [J]. Physical Review Letters, 2003, 90(10): 105901.CrossRefGoogle Scholar
  11. [11]
    Leipner H S, Hübner C G, Staab T E M, et al. Positron annihilation at dislocations and related point defects in semiconductors [J]. Physica Status Solidi, 1999, 171(1): 377–382.CrossRefGoogle Scholar
  12. [12]
    Jia C L, Urban K. Atomic-resolution measurement of oxygen concentration in oxide materials [J]. Science, 2004, 303(5666): 2001–2004.CrossRefGoogle Scholar
  13. [13]
    Tanaka T, Matsunaga K, Ikuhara Y, et al. First-principles study on structures and energetics of intrinsic vacancies in SrTiO3 [J]. Physical Review B, 2003, 2002(192): 325–330.Google Scholar
  14. [14]
    Keeble D J, Wicklein S, Dittmann R, et al. Identification of A- and B-site cation vacancy defects in perovskite oxide thin films [J]. Physical Review Letters, 2010, 105(22): 3987–3996.CrossRefGoogle Scholar
  15. [15]
    Hamid A S, Uedono A, Chikyow T, et al. Vacancy-type defects and electronic structure of perovskite-oxide SrTiO3 from positron annihilation [J]. Physica Status Solidi A-Applications and Materials Science, 2006, 203(2): 300–305.CrossRefGoogle Scholar
  16. [16]
    Shimoyama K, Kiyohara M, Kubo K, et al. Epitaxial growth of BaTiO3/SrTiO3 structures on SrTiO3 substrate with automatic feeding of oxygen from the substrate [J]. Journal of Applied Physics, 2002, 92(8): 4625–4630.CrossRefGoogle Scholar
  17. [17]
    Uedono A, Kiyohara M, Shimoyama K, et al. Vacancy-type defects in SrTiO3 probed by a monoenergetic positron beam [J]. Journal of Applied Physics, 2004, 91(8): 5307–5312.CrossRefGoogle Scholar
  18. [18]
    Tuomisto F, Makkonen I. Defect identification in semiconductors with positron annihilation: Experiment and theory [J]. Reviews of Modern Physics, 2013, 85(4): 1583–1631.CrossRefGoogle Scholar
  19. [19]
    Keeble D J, Mackie R A, Egger W, et al. Identification of vacancy defects in a thin film perovskite oxide [J]. Physical Review B, 2010, 81(6): 064102.CrossRefGoogle Scholar
  20. [20]
    Claus J, Leonhardt M, Maier J. Tracer diffusion and chemical diffusion of oxygen in acceptor doped SrTiO3 [J]. Journal of the Physics and Chemistry of Solids, 2000, 61(8): 1199–1207.CrossRefGoogle Scholar
  21. [21]
    Helmbold J, Borchardt G, Meyer R, et al. Defects and Surface-Induced Effects in Advanced Perovskites [M]. Heidelberg: Springer-Verlag, 2000.Google Scholar
  22. [22]
    Jung W C, Tuller H L. Impedance study of SrTi1−xFe xO3−δ, (x=0.05 to 0.80) mixed ionic-electronic conducting model cathode [J]. Solid State Ionics, 2009, 180(11):843–847.CrossRefGoogle Scholar
  23. [23]
    Moos R, Hardtl K H. Defect chemistry of donor-doped and undoped strontium titanate ceramics between 1 000 °C and 1400 C [J]. Journal of the American Ceramic Society, 1997, 80(10): 2549–2562.CrossRefGoogle Scholar
  24. [24]
    Denk I, Wolfram Münch, Maier J. Partial conductivities in SrTiO3: Bulk polarization experiments, oxygen concentration cell measurements, and defect-chemical modeling [J]. Journal of the American Ceramic Society, 1995, 78(12): 3265–3272.CrossRefGoogle Scholar
  25. [25]
    Shi T, Chen Y, Guo X. Defect chemistry of alkaline earth metal (Sr/Ba) titanates [J]. Progress in Materials Science, 2016, 80: 77–132.CrossRefGoogle Scholar
  26. [26]
    Guo X, Fleig J, Maier J. Determination of electronic and ionic partial conductivities of a grain boundary: method and application to acceptor-doped SrTiO3 [J]. Solid State Ionics, 2002, 154(12):563–569.CrossRefGoogle Scholar
  27. [27]
    De Souza R A, Fleig J, Merkle R, et al. SrTiO3: A model electroceramic [J]. Zeitschrift Für Metallkunde, 2013, 94(3): 218–225.CrossRefGoogle Scholar
  28. [28]
    Yoo H I, Oh T S, Kwon H S, Electrical conductivity-defect structure correlation of variable-valence and fixed-valence acceptor-doped BaTiO3 in quenched state [J]. Physical Chemistry Chemical Physics, 2009, 11(17): 3115–3126.CrossRefGoogle Scholar
  29. [29]
    Mangalam R V, Chakrabrati M, Sanyal D, et al. Identifying defects in multiferroic nanocrystalline BaTiO3 by positron annihilation techniques [J]. Journal of Physics Condensed Matter An Institute of Physics Journal, 2009, 21(44): 445902.CrossRefGoogle Scholar
  30. [30]
    Mackie R A, Singh S, Laverock J, et al. Vacancy defect positron lifetimes in strontium titanate [J]. Physical Review B, 2009, 79(1): 014102.CrossRefGoogle Scholar
  31. [31]
    Akhtar M J, Akhtar Z U N, Jackson R A, et al. Computer simulation studies of strontium titanate [J]. Journal of the American Ceramic Society, 1995, 78(2): 421–428.CrossRefGoogle Scholar
  32. [32]
    Singh S, Mcguire S. Cation vacancies in ferroelectric PbTiO3 and Pb(Zr,Ti)O3 [J]. Physical Review B, 2007, 76(14): 4109.Google Scholar

Copyright information

© Wuhan University and Springer-Verlag GmbH Germany 2019

Authors and Affiliations

  • Yuanyuan Jin
    • 1
  • Xiaodong Li
    • 1
  • Yao Hao
    • 1
  • Jingjing Li
    • 1
  • Zhu Wang
    • 1
    Email author
  1. 1.Key Laboratory of Nuclear Solid State Physics Hubei Province/School of Physics and TechnologyWuhan UniversityWuhan, HubeiChina

Personalised recommendations