Wuhan University Journal of Natural Sciences

, Volume 24, Issue 5, pp 405–408 | Cite as

Effects of Hot Wire Temperature on Properties of GeSi:H Films with High Hydrogen Dilution by Hot-Wire Chemical Vapor Deposition

  • Xin Tai
  • Xingbing Li
  • Huang Zhen
  • Honglie Shen
  • Yufang Li
  • Haibin HuangEmail author
Chemistry and Physics


GeSi:H films are prepared by hot-wire chemical vapor deposition (CVD) with high hydrogen dilution, DH=98%. Effects of hot wire temperature (Tw) on deposition rate, structural properties and bandgap of GeSi:H films are studied with surface profilemeter, Raman spectroscopy, Fourier transformed infrared spectroscopy, and UV-VIS-NIR spectrophotometer. It is found that the deposition rate (Rd) goes up with increasing of Tw, but increasing rate of Rd declines when Tw⩾1 550 °C. High Tw is beneficial to the formation of Ge-Si, but it has little effect on relative contents of the hydrogen bonds (Ge-H, Si-H, etc.) in the films. In the Tw range of 1 400–1 850 °C, the maximum bandgap of the GeSi:H films is 1.39 eV at Tw =1 450 °C and the band gap decreases with Tw increasing when Tw⩾1 450 °C.

Key words

GeSi:H films hot-wire chemical vapor deposition (CVD) deposition rate structural properties band gap hot wire temperature 

CLC number

O 484.1 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Dominguez M, Rosales P, Torres A, et al. Effects of germane flow rate in electrical properties of a-SiGe:H films for ambipolar thin-film transistors [J]. Thin Solid Films, 2014, 562(26): 260–263.CrossRefGoogle Scholar
  2. [2]
    Han S Y, Jeon K S, Cho B, et al. Characteristics of a-SiGe:H thin film transistor infrared photosensor for touch sensing displays [J]. IEEE Journal of Quantum Electronics, 2012, 48(7): 952–959.CrossRefGoogle Scholar
  3. [3]
    Ducros C, Szambolics H, Emieux F, et al. Back reflectors with periodic gratings for light trapping in a-SiGe:H solar cells [J]. Thin Solid Films, 2016, 620: 10–16.CrossRefGoogle Scholar
  4. [4]
    Doyle J R, Xu Y, Reedy R, et al. Film stoichiometry and gas dissociation kinetics in hot-wire chemical vapor deposition of a-SiGe:H [J]. Thin Solid Films, 2008, 516(5): 526–528.CrossRefGoogle Scholar
  5. [5]
    Jadkar S R, Sali J V, Kshirsagar S T, et al. The effect of substrate temperature on HW-CVD deposited a-SiGe:H films [J]. Journal of Non-Crystalline Solids, 2002, 299(2): 168–173.CrossRefGoogle Scholar
  6. [6]
    Yusoff A R M, Syahrul M N, Henkel K. Retracted article: Hydrogenated nanocrystalline silicon germanium thin films [J]. Pramana, 2007, 69(2): 285–300.CrossRefGoogle Scholar
  7. [7]
    Xu Y, Mahan A H, Gedvilas L M, et al. Deposition of photosensitive hydrogenated amorphous silicon-germanium films with a tantalum hot wire [J]. Thin Solid Films, 2006, 501(1): 198–201.CrossRefGoogle Scholar
  8. [8]
    Xu Y, Nelson B P, Gedvilas L M, et al. Improving narrow bandgap a-SiGe:H alloys grown by hot-wire chemical vapor deposition [J]. Thin Solid Films, 2003, 430(1): 197–201.CrossRefGoogle Scholar
  9. [9]
    Karthik M, Gohil J M, Suresh A K. Probing the thickness and roughness of the functional layer in thin film composite membranes [J]. International Journal of Hydrogen Energy, 2017, 42(42): 26464–26474.CrossRefGoogle Scholar
  10. [10]
    Xie D, Qiu Z R, Wan L, et al. Spectroscopic ellipsometry and X-ray diffraction studies on Si1-xGex/Si epifilms and superlattices [J]. Applied Surface Science, 2017, 421: 748–754.CrossRefGoogle Scholar
  11. [11]
    Kamesaki K, Masuda A, Izumi A, et al. Proposal of catalytic chemical sputtering method and its application to prepare large grain size poly-Si [J]. Thin Solid Films, 2001, 395(1): 169–172.CrossRefGoogle Scholar
  12. [12]
    Werf C H M V, Veenendaal P A T T, Veen M K V, et al. The influence of the filament temperature on the structure of hot-wire deposited silicon [J]. Thin Solid Films, 2003, 430(1): 46–49.CrossRefGoogle Scholar
  13. [13]
    Alonso M I, Winer K. Raman spectra of c-Si1−xGex alloys [J]. Physical Review B Condensed Matter, 1989, 39(14): 10056–10062.CrossRefGoogle Scholar
  14. [14]
    Isomura M, Nakahata K, Shima M, et al. Microcrystalline silicon-germanium solar cells for multi-junction structures [J]. Solar Energy Materials & Solar Cells, 2002, 74(1): 519–524.CrossRefGoogle Scholar
  15. [15]
    Veenendaal P A T T, Schropp R E I. Processes in silicon deposition by hot-wire chemical vapor deposition[J]. Current Opinion in Solid State & Materials Science, 2002, 6(5): 465–470.CrossRefGoogle Scholar
  16. [16]
    Soukup R J, Ianno N J, Pribil G, et al. Deposition of high quality amorphous silicon, germanium and silicongermanium thin films by a hollow cathode reactive sputtering system [J]. Surface & Coatings Technology, 2004, 177: 676–681.CrossRefGoogle Scholar

Copyright information

© Wuhan University and Springer-Verlag GmbH Germany 2019

Authors and Affiliations

  • Xin Tai
    • 1
  • Xingbing Li
    • 2
  • Huang Zhen
    • 2
  • Honglie Shen
    • 3
  • Yufang Li
    • 3
  • Haibin Huang
    • 1
    Email author
  1. 1.Institute of PhotovoltaicsNanchang UniversityNanchang, JiangxiChina
  2. 2.China Intellectual Electric Power Technology (Taixing) Co. Ltd.Taixing, JiangsuChina
  3. 3.Jiangsu Key Laboratory of Materials and Technology for Energy ConversionNanjing, JiangsuChina

Personalised recommendations