Wuhan University Journal of Natural Sciences

, Volume 24, Issue 1, pp 79–85 | Cite as

Tensile Piezoelectric Actuator: Fabrication, Characterization and Application

  • Dapeng Zhu
  • Kun Xie
  • Yingwei LiEmail author
Engineering Technology


A multilayer piezoelectric actuator, with dimension of 10 mm×10 mm×60 mm, which can output a tensile displacement directly by exploring the d31 effect of piezoelectrics, was fabricated using soft Lead Zirconate Titanate (PZT) ceramics. The performance of the actuator was characterized by a special home-made experimental setup under electric fields varying from 200 to 1 000 V/mm with the preload varying from -150 to 100 N at room temperature. Results showed that it can output a maximum tensile displacement of 12 μm under unipolar electric field of 1 000 V/mm and preload was independent with generative displacement in the range of testing preload. Additionally, using the actuator, we built a micro loading apparatus, which can be used to test the fracture behavior of brittle materials.

Key words

piezoelectric actuator actuation displacement Lead Zirconate Titanate ceramics a micro loading apparatus 

CLC number

TH 703 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Uchino K, Nomura S, Cross L E, et al. Electrostrictive effect in perovskites and its transducer applications[J]. Journal of Materials Science, 1981, 16(3): 569–578.CrossRefGoogle Scholar
  2. [2]
    Uchino K. Multilayer ceramic actuators[J]. Encyclopedia of Materials Science & Technology, 2001, 1(5): 5850–5858.CrossRefGoogle Scholar
  3. [3]
    Uchino K. Piezoelectric actuators 2006[J]. Journal of Electroceramics, 2008, 20(3-4): 301–311.CrossRefGoogle Scholar
  4. [4]
    Uchino K. Piezoelectric Actuators and Ultrasonic Motors[M]. Berlin: Springer-Verlag, 2011.Google Scholar
  5. [5]
    Wang S P, Rong W B, Wang L F, et al. Design, analysis and experimental performance of a novel stick-slip type piezoelectric rotary actuator based on variable force couple driving[J]. Smart Material Structures, 2017, 26(5):055005.CrossRefGoogle Scholar
  6. [6]
    Mao-Hsiung C. Development of X-Y servo pneumatic-piezoelectric hybrid actuators for position control with high response, large stroke and nanometer accuracy[J]. Sensors, 2010, 10(4): 2675–2693.CrossRefGoogle Scholar
  7. [7]
    Li F X, Rajapakse R K N D, Mumford D, et al. Quasi-static thermo-electro-mechanical behavior of piezoelectric stack actuators[J]. Smart Materials & Structures, 2008, 17(17): 015049.CrossRefGoogle Scholar
  8. [8]
    Webber K G, Franzbach D J, Koruza J. Determination of the true operational range of a piezoelectric actuator[J]. Journal of the American Ceramic Society, 2014, 97(9): 2842–2849.CrossRefGoogle Scholar
  9. [9]
    Zhao J Y, Gong W T, Cai W, et al. Piezoelectric bimorph-based scanner in the tip-scan mode for high speed atomic force microscope[J]. Review of Scientific Instruments, 2013, 84(8): 930–230.CrossRefGoogle Scholar
  10. [10]
    Fu J, Zhou X L, Li F X. An adaptive nanoindentation system based on electric bending of a piezoelectric cantilever[J]. Sensors & Actuators A Physical, 2014, 216(3): 249–256.CrossRefGoogle Scholar
  11. [11]
    PI Ceramic GmbH. Displacement modes of piezoelectric actuators [EB/OL]. [2018-07-10].
  12. [12]
    Pramanick A, Damjanovic D, Daniels J E, et al. Origins of electro-mechanical coupling in polycrystalline ferroelectrics during subcoercive electrical loading[J]. Journal of the American Ceramic Society, 2011, 94(2): 293–309.CrossRefGoogle Scholar
  13. [13]
    Qin Y D, Tian Y L, Zhang D W, et al. A novel direct inverse modeling approach for hysteresis compensation of piezoelectric actuator in feedforward applications[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(3): 981–989.CrossRefGoogle Scholar
  14. [14]
    Kungl H, Hoffmann M J. Method for the estimation of the total displacement of ferroelectric actuators under mixed thermal and electrical loading[J]. Sensors & Actuators A Physical, 2008, 144(2):328–336.CrossRefGoogle Scholar
  15. [15]
    Ehmke M C, Schader F H, Webber K G, et al. Stress, temperature and electric field effects in the lead-free (Ba,Ca) (Ti, Zr)O3, piezoelectric system[J]. Acta Materialia, 2014, 78(5): 37–45.CrossRefGoogle Scholar
  16. [16]
    Li Y W, Zhou X L, Li F X. Temperature-dependent mechanical depolarization of ferroelectric ceramics[J]. Journal of Physics D Applied Physics, 2010, 43(17): 175501.CrossRefGoogle Scholar
  17. [17]
    Zhou D Y, Kamlah M, Munz D. Effects of bias electric fields on the non-linear ferroelastic behavior of soft lead zirconate titanate piezoceramics[J]. Journal of the American Ceramic Society, 2010, 88(4): 867–874.CrossRefGoogle Scholar
  18. [18]
    Webber K G, Aulbach E, Key T, et al. Temperature-dependent ferroelastic switching of soft lead zirconate titanate[J]. Acta Materialia, 2009, 57(15): 4614–4623.CrossRefGoogle Scholar

Copyright information

© Wuhan University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Civil Engineering/State Key Laboratory of Water Resources and Hydropower Engineering ScienceWuhan UniversityHubeiChina

Personalised recommendations