pp 1–13 | Cite as

Student understanding of linear combinations of eigenvectors

  • Megan WawroEmail author
  • Kevin Watson
  • Michelle Zandieh
Original Article


To contribute to the sparse educational research on student understanding of eigenspace, we investigated how students reason about linear combinations of eigenvectors. We present results from student reasoning on two written multiple-choice questions with open-ended justifications involving linear combinations of eigenvectors in which the resultant vector is or is not an eigenvector of the matrix. We detail seven themes that analysis of our data revealed regarding student responses. These themes include: determining if a linear combination of eigenvectors satisfies the equation \(A\varvec{x}=\lambda \varvec{x}\); reasoning about a linear combination of eigenvectors belonging to a set of eigenvectors; conflating scalars in a linear combination with eigenvalues; thinking eigenvectors must be linearly independent; and reasoning about the number of eigenspace dimensions for a matrix. In the discussion, we explore how themes sometimes cut across questions and how looking across questions gives insight into individuals’ conceptions of eigenspace. Implications for teaching and future research are also offered.


Linear algebra Student reasoning Eigenspace Linear combination 



This material is based upon work supported by the National Science Foundation under Grant Number DUE-1452889. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.


  1. Arnon, I., Cottrill, J., Dubinsky, E., Oktac, A., Roa Fuentes, S., Trigueros, M., et al. (2014). APOS Theory. A framework for research and curriculum development in mathematics education. Nueva York: Springer.Google Scholar
  2. Artigue, M., Batanero, C., & Kent, P. (2007). Mathematics thinking and learning at post-secondary level. In F. K. Lester Jr.. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 1011–1050). Reston: National Council of Teachers of Mathematics.Google Scholar
  3. Beltrán-Meneu, M. J., Murillo-Arcila, M., & Albarracín, L. (2016). Emphasizing visualization and physical applications in the study of eigenvectors and eigenvalues. Teaching Mathematics and its Applications: An International Journal of the IMA, 36(3), 123–135.Google Scholar
  4. Blumer, H. (1969). Symbolic interactionism: Perspectives and method. Englewood Cliffs: Prentice-Hall.Google Scholar
  5. Bouhjar, K., Andrews-Larson, C., Haider, M., & Zandieh, M. (2018). Examining Students’ Procedural and Conceptual Understanding of Eigenvectors and Eigenvalues in the Context of Inquiry-Oriented Instruction. In S. Stewart, C. Andrews-Larson, A. Berman, & M. Zandieh (Eds.), Challenges In Teaching Linear Algebra Challenges and Strategies in Teaching Linear Algebra (pp. 193–216). Cham: Springer.CrossRefGoogle Scholar
  6. Çağlayan, G. (2015). Making sense of eigenvalue-eigenvector relationships: Math majors’ linear algebra–geometry connections in a dynamic environment. Journal of Mathematical Behavior, 40, 131–153.CrossRefGoogle Scholar
  7. Cobb, P., & Yackel, E. (1996). Constructivist, emergent, and sociocultural perspectives in the context of developmental research. Educational Psychologist, 31, 175–190.CrossRefGoogle Scholar
  8. Dorier, J.-L. (Ed.). (2000). On the teaching of linear algebra. Dordrecht: Kluwer Academic.Google Scholar
  9. Dubinsky, E., & McDonald, M. (2001). APOS: A constructivist theory of learning. In D. Holton (Ed.), The teaching and learning of mathematics at university level: An ICMI study (pp. 275–282). Dordrecht: Kluwer Academic.Google Scholar
  10. Glaser, B., & Strauss, A. (1967). The discovery of grounded theory: Strategies for qualitative research. Chicago: Aldine Publishing Company.Google Scholar
  11. Gol Tabaghi, S., & Sinclair, N. (2013). Using dynamic geometry software to explore eigenvectors: The emergence of dynamic-synthetic-geometric thinking. Technology, Knowledge and Learning, 18(3), 149–164.CrossRefGoogle Scholar
  12. Harel, G. (2000). Three principles of learning and teaching mathematics. In J.-L. Dorier (Ed.), On the teaching of linear algebra. Dordrecht: Kluwer Academic.Google Scholar
  13. Henderson, F., Rasmussen, C., Sweeney, G., Wawro, M., & Zandieh, M. (2010). Symbol sense in linear algebra: A start toward eigen theory. Proceedings of the 13th Annual Conference on Research in Undergraduate Mathematics Education, Raleigh, NC. Retrieved from Accessed 1 Sept 2015.
  14. Hiebert, J., & Lafevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 1–27). Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  15. Hillel, J. (2000). Modes of description and the problem of representation in linear algebra. In J.-L. Dorier (Ed.), On the teaching of linear algebra (pp. 191–207). Dordrecht: Kluwer.Google Scholar
  16. Larson, C., & Zandieh, M. (2013). Three interpretations of the matrix equation Ax = b. For the Learning of Mathematics, 33(2), 11–17.Google Scholar
  17. Lay, D., Lay, S., & McDonald, J. (2016). Linear algebra and its applications (5th edn.). Essex: Pearson Education.Google Scholar
  18. Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought-revealing activities for students and teachers. In A. Kelly & R. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 591–646). New Jersey: Lawrence Erlbaum.Google Scholar
  19. Miles, M. B., Huberman, A. M., & Saldaña, J. (2014). Fundamentals of qualitative data analysis. In Qualitative Data Analysis: A Methods Sourcebook (3rd edn.). Thousand Oaks: Sage Publications Inc.Google Scholar
  20. Nyman, M. A., Lapp, D. A., St. John, D., & Berry, J. S. (2010). Those do what? Connecting eigenvectors and eigenvalues to the rest of linear algebra: Using visual enhancements to help students connect eigenvectors to the rest of linear algebra. International Journal for Technology in Mathematics Education, 17(1), 35–41.Google Scholar
  21. Plaxco, D., Zandieh, M., & Wawro, M. (2018). Stretch directions and stretch factors: A sequence intended to support guided reinvention of eigenvector and eigenvalue. In S. Stewart, C. Andrews-Larson, A. Berman & M. Zandieh (Eds.), Challenges In Teaching Linear Algebra. ICME-13 Monographs (pp. 175–192). Cham: Springer.CrossRefGoogle Scholar
  22. Rasmussen, C., & Wawro, M. (2017). Post-calculus research in undergraduate mathematics education. In J. Cai (Ed.), The compendium for research in mathematics education (pp. 551–579). Reston: National Council of Teachers of Mathematics.Google Scholar
  23. Salgado, H., & Trigueros, M. (2015). Teaching eigenvalues and eigenvectors using models and APOS Theory. The Journal of Mathematical Behavior, 39, 100–120.CrossRefGoogle Scholar
  24. Saxe, G. B. (2002). Children’s developing mathematics in collective practices: A framework for analysis. Journal of the Learning Sciences, 11, 275–300.CrossRefGoogle Scholar
  25. Tall, D. O. (2004). Building theories: The three worlds of mathematics. For the Learning of Mathematics, 24(1), 29–32.Google Scholar
  26. Thomas, M. O. J., & Stewart, S. (2011). Eigenvalues and eigenvectors: Embodied, symbolic and formal thinking. Mathematics Education Research Journal, 23(3), 275–296.CrossRefGoogle Scholar
  27. von Glasersfeld, E. (1995). Radical constructivism: A way of knowing and learning. Bristol: Falmer Press.CrossRefGoogle Scholar
  28. Watson, K., Wawro, M., Zandieh, M., & Kerrigan, S. (2017). Knowledge about student understanding of eigentheory: Information gained from multiple choice extended assessment. In A. Weinberg, C. Rasmussen, J. Rabin, M. Wawro, and S. Brown (Eds.), Proceedings of the 20th annual conference on research in undergraduate mathematics education (pp. 311–325), San Diego, CA: SIGMAA on RUME.Google Scholar
  29. Wawro, M., Watson, K., & Zandieh, M. (2018). Student understanding of linear combinations of eigenvectors. In A. Weinberg, C. Rasmussen, J. Rabin, M. Wawro, and S. Brown (Eds.), Proceedings of the 21st annual conference on research in undergraduate mathematics education (pp. 1372–1378), San Diego, CA: SIGMAA on RUME.Google Scholar
  30. Wawro, M., Zandieh, M., Rasmussen, C., & Andrews-Larson, C. (2013). Inquiry oriented linear algebra: Course materials. Retrieved from Accessed 1 Sept 2015.
  31. Wawro, M., Zandieh, M., & Watson, K. (2018). Delineating aspects of understanding eigentheory through assessment development. In V. Durand-Guerrier, R. Hochmuth, S. Goodchild, & N.M. Hogstad (Eds.), Proceedings of INDRUM 2018 Second Conference of the International Network for Didactic Research in University Mathematics (pp. 275–284), Kristiansand: University of Agder and INDRUM.Google Scholar
  32. Zandieh, M., Adiredja, A., & Knapp, J. (2018). Exploring Everyday Examples to Explain Basis from Eight German Male Graduate STEM Students. (Manuscript submitted for publication).Google Scholar
  33. Zandieh, M., & Andrews-Larson, C. (2018). Solving linear system: Reconstructing unknowns to interpret row reduced matrices. (Manuscript submitted for publication).Google Scholar
  34. Zandieh, M., Plaxco, D., Wawro, M., Rasmussen, C., Milbourne, H., & Czeranko, K. (2015). Extending multiple choice format to document student thinking. In T. Fukawa-Connelly, N. Infante, K. Keene, and M. Zandieh (Eds.), Proceedings of the 18th annual conference on research in undergraduate mathematics education (pp. 1094–1100), Pittsburgh, PA: SIGMAA on RUME.Google Scholar
  35. Zandieh, M., Wawro, M., & Rasmussen, C. (2017). An example of inquiry in linear algebra: The roles of symbolizing and brokering. PRIMUS, 27(1), 96–124.CrossRefGoogle Scholar

Copyright information

© FIZ Karlsruhe 2019

Authors and Affiliations

  1. 1.Department of MathematicsVirginia TechBlacksburgUSA
  2. 2.College of Integrative Sciences and ArtsArizona State UniversityMesaUSA

Personalised recommendations