Advertisement

Israel Journal of Mathematics

, Volume 230, Issue 2, pp 771–793 | Cite as

On the analytic properties of intertwining operators II: Local degree bounds and limit multiplicities

  • Tobias Finis
  • Erez LapidEmail author
Article
  • 25 Downloads

Abstract

In this paper we continue to study the degrees of matrix coefficients of intertwining operators associated to reductive groups over p-adic local fields. Together with previous analysis of global normalizing factors, we can control the analytic properties of global intertwining operators for a large class of reductive groups over number fields, in particular for inner forms of GL(n) and SL(n) and quasi-split classical groups. This has a direct application to the limit multiplicity problem for these groups.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Arthur, Intertwining operators and residues. I. Weighted characters, Journal of Functional Analysis 84 (1989), 19–84.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Institut des Hautes Études Scientifiques. Publications Mathématiques 41 (1972), 5–251.CrossRefzbMATHGoogle Scholar
  3. [3]
    C. J. Bushnell and P. C. Kutzko, The Admissible Dual of GL(N) via Compact Open Subgroups, Annals of Mathematics Studies, Vol. 129, Princeton University Press, Princeton, NJ, 1993.Google Scholar
  4. [4]
    L. Corwin, A construction of the supercuspidal representations of GLn(F), F p-adic, Transactions of the American Mathematical Society 337 (1993), 1–58.MathSciNetzbMATHGoogle Scholar
  5. [5]
    T. Finis and E. Lapid, On the analytic properties of intertwining operators I: global normalizing factors, Iranian Mathematical Society. Bulletin 43 (2017), 235–277.MathSciNetzbMATHGoogle Scholar
  6. [6]
    T. Finis and E. Lapid, An approximation principle for congruence subgroups II: application to the limit multiplicity problem, Mathematische Zeitschrift 289 (2018), 1357–1380.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    T. Finis, E. Lapid and W. Müller, On the degrees of matrix coefficients of intertwining operators, Pacific Journal of Mathematics 260 (2012), 433–456.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    T. Finis, E. Lapid and W. Müller, Limit multiplicities for principal congruence subgroups of GL(n) and SL(n), Journal of the Institute of Mathematics of Jussieu 14 (2015), 589–638.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    J. Fintzen, Types for tame p-adic groups, https://arxiv.org/abs/1810.04198.Google Scholar
  10. [10]
    J.-L. Kim, Supercuspidal representations: an exhaustion theorem, Journal of the American Mathematical Society 20 (2007), 273–320.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    E. Lapid, On the support of matrix coefficients of supercuspidal representations of the general linear group over a local non-archimedean field, https://arxiv.org/abs/1802.07154.Google Scholar
  12. [12]
    M. Miyauchi and S. Stevens, Semisimple types for p-adic classical groups, Mathematische Annalen 358 (2014), 257–288.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    V. Sécherre and S. Stevens, Représentations lisses de GLm(D). IV. Représentations supercuspidales, Journal of the Institute of Mathematics of Jussieu 7 (2008), 527–574.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    V. Sécherre, Représentations lisses de GL(m,D). I. Caractères simples, Bulletin de la Société Mathématique de France 132 (2004), 327–396.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    V. Sécherre, Représentations lißses de GL(m,D). II. β-extensions, Compositio Mathematica 141 (2005), 1531–1550.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    V. Sécherre, Représentations lisses de GLm(D). III. Types simples, Annales Scientifiques de l’École Normale Supérieure 38 (2005), 951–977.CrossRefzbMATHGoogle Scholar
  17. [17]
    F. Shahidi, On certain L-functions, American Journal of Mathematics 103 (1981), 297–355.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    A. J. Silberger, Introduction to Harmonic Analysis on Reductive p-adic Groups, Mathematical Notes, Vol. 23, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1979.Google Scholar
  19. [19]
    S. Stevens, The supercuspidal representations of p-adic classical groups, Inventiones Mathematicae 172 (2008), 289–352.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    J. Tits, Reductive groups over local fields, in Automorphic Forms, Representations and Lfunctions (Proc. Sympos. Pure Math., Oregon State University, Corvallis, Oregon, 1977), Part 1, Proceedings of Symposia in Pure Mathematics, Vol. 33, American Mathematical Society, Providence, RI, 1979, pp. 29–69.CrossRefGoogle Scholar
  21. [21]
    J.-L. Waldspurger, La formule de Plancherel pour les groupes p-adiques (d’après Harish- Chandra), Journal of the Institute of Mathematics of Jussieu 2 (2003), 235–333.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    J.-K. Yu, Construction of tame supercuspidal representations, Journal of the American Mathematical Society 14 (2001), 579–622.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Hebrew University of Jerusalem 2019

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität LeipzigLeipzigGermany
  2. 2.Department of MathematicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations