Israel Journal of Mathematics

, Volume 230, Issue 2, pp 973–1005 | Cite as

Semisimplicity of the Lyapunov spectrum for irreducible cocycles

  • Alex Eskin
  • Carlos MatheusEmail author


Let G be a semisimple Lie group acting on a space X, let μ be a symmetric compactly supported measure on G, and let A be a strongly irreducible linear cocycle over the action of G. We then have a random walk on X, and let T be the associated shift map. We show that, under certain assumptions, the cocycle A over the action of T is conjugate to a block conformal cocycle.

This statement is used in the recent paper by Eskin–Mirzakhani on the classification of invariant measures for the SL(2, ℝ) action on moduli space. The ingredients of the proof are essentially contained in the papers of Guivarch and Raugi and also Goldsheid and Margulis.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BQ]
    Y. Benoist and J.-F. Quint, Mesures stationnaires et fermés invariants des espaces homogènes, Annals of Mathematics 174 (2011), 1111–1162.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [BQb]
    Y. Benoist and J.-F. Quint, Random Walks on Reductive Groups., Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 62, Springer, Cham, 2016.Google Scholar
  3. [EMi]
    A. Eskin and M. Mirzakhani, Invariant and stationary measures for the SL(2, R) action on moduli space, Publications Mathématiques. Institut de Hautes Études Scientifiques 127 (2018), 95–324.CrossRefzbMATHGoogle Scholar
  4. [Fi]
    S. Filip, Notes on the multiplicative ergodic theorem, Ergodic Theory and Dynamical Systems (2017), doi:10.1017/etds.2017.68Google Scholar
  5. [Fu]
    H. Furstenberg, Noncommuting random products, Transactions of the AmericanMathematical Society 108 (1963), 377–428.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [GM]
    I. Ya. Gol’dsheid and G. A. Margulis, Lyapunov indices of a product of random matrices, Russian Mathematical Surveys 44 (1989), 11–71.MathSciNetCrossRefGoogle Scholar
  7. [GR1]
    Y. Guivarc’h and A. Raugi, Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 69 (1985), 187–242.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [GR2]
    Y. Guivarc’h and A. Raugi, Propriétés de contraction d’un semi-groupe de matrices inversibles. Coefficients de Liapunoff d’un produit de matrices aléatoires indépendantes, Israel Journal of Mathematics 65 (1989), 165–196.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [Ka]
    V. Kaimanovich, Lyapunov exponents, symmetric spaces and a multiplicative ergodic theorem for semisimple Lie groups, Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta imeni V. A. Steklova 164 (1987), 29–46, 196–197; translation in Journal of Soviet Mathematics47 (1989), 2387–2398.Google Scholar
  10. [KM]
    A. Karlsson, G. Margulis, A multiplicative ergodic theorem and nonpositively curved spaces, Communications in Mathematical Physics 208 (1999), 107–123.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [Kn]
    A. Knapp, Lie Groups Beyond an Introduction, Progress in Mathematics, Vol. 140, Birkhäuser, Boston, MA, 2002.Google Scholar
  12. [Os]
    V. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskovodkogo Matematičeskogo Obščestva 19 (1968), 179–210.MathSciNetGoogle Scholar
  13. [Sch]
    K. Schmidt, Amenability, Kazhdan’s property T, strong ergodicity and invariant means for ergodic group-actions, Ergodic Theory and Dynamical Systems 1 (1981), 223–236.zbMATHGoogle Scholar
  14. [Zi]
    R. Zimmer, Ergodic Theory and Semisimple Groups, Monographs in Mathematics, Vol. 81. Birkhäuser, Basel, 1984.CrossRefzbMATHGoogle Scholar

Copyright information

© The Hebrew University of Jerusalem 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ChicagoChicagoUSA
  2. 2.CMLS, École Polytechnique, CNRS (UMR 7640)PalaiseauFrance

Personalised recommendations