Israel Journal of Mathematics

, Volume 230, Issue 2, pp 855–894 | Cite as

The norm closed triple semigroup algebra

  • Eleftherios KastisEmail author


The w*-closed triple semigroup algebra was introduced by Power and the author in [21], where it was proved to be reflexive and to be chiral, in the sense of not being unitarily equivalent to its adjoint algebra. Here an analogous operator norm-closed triple semigroup algebra \(A_{ph}^{G^+}\) is considered and shown to be a triple semi-crossed product for the action on analytic almost periodic functions by the semigroups of one-sided translations and one-sided dilations. The structure of isometric automorphisms of \(A_{ph}^{G^+}\) is determined and \(A_{ph}^{G^+}\) is shown to be chiral with respect to isometric isomorphisms.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Anoussis, A. Katavolos and I. G. Todorov, Operator algebras from the Heisenberg semigroup, Proceedings of the Edinburgh Mathematical Society 55 (2012), 1–22.MathSciNetzbMATHGoogle Scholar
  2. [2]
    R. J. Archbold and J. S. Spielberg, Topologically free actions and ideals in discrete C*-dynamical systems, Proceedings of the Edinburgh Mathematical Society 37 (1993), 119–124.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    R. Arens, A Banach algebra generalization of conformal mappings of the disk, Transactions of the American Mathematical Society 81 (1956), 501–513.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    W. Arveson, Operator algebras and measure preserving automorphisms, Acta Mathematica 118 (1967), 95–109.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A. S. Besicovitch, Almost Periodic Functions, Dover, New York, 1955.zbMATHGoogle Scholar
  6. [6]
    H. Bohr, Zur Theorie der fastperiodischen Funktionen I, Acta Mathematica 45 (1925), 29–127.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    A. Böttcher, Yu. I. Karlovich and I. M. Spitkovsky, Convolution Operators and Factoriza-tion of Almost Periodic Matrix Functions, Operator Theory: Advances and Applications, Vol. 131, Birkhäuser, Basel, 2002.Google Scholar
  8. [8]
    N. P. Brown and N. Ozawa, C*-algebras and Finite-dimensional Approximations, Graduate Studies in Mathematics, Vol. 88, American Mathematical Society, Providence, RI, 2008.Google Scholar
  9. [9]
    J. B. Conway, A Course in Functional Analysis, Graduate Texts in Mathematics, Vol. 96, Springer, New York, 1990.Google Scholar
  10. [10]
    K. R. Davidson, Nest Algebras, Pitman Research Notes in Mathematics Series, Vol. 191, Longman Scientific and Technical, Harlow, 1988.Google Scholar
  11. [11]
    K. R. Davidson, C*-algebras by Example, Fields Institute Monographs, Vol. 6, American Mathematical Society, Providence, RI, 1996.Google Scholar
  12. [12]
    K. R. Davidson, A. H. Fuller and E. T. A. Kakariadis, Semicrossed products of opertor algebras by semigroups, Memoirs of the American Mathematical Society 247 (2017).Google Scholar
  13. [13]
    K. R. Davidson and E. G. Katsoulis, Isomorphisms between topological conjugacy alge-bras, Journal für die Reine und Angewandte Mathematik 621 (2008), 29–51.MathSciNetzbMATHGoogle Scholar
  14. [14]
    A. P. Donsig, A. Katavolos and A. Manoussos, The Jacobson radical for analytic crossed products, Journal of Functional Analysis 187 (2001), 129–145.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    E. G. Effros and F. Hahn, Locally compact transformation groups and C*-algebras, Memoirs of the American Mathematical Society 75 1967.Google Scholar
  16. [16]
    H. Furstenberg, Poincare recurrence and number theory, Bulletin of the American Mathematical Society 5 (1981), 211–234.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    P. Harpe and G. Skandalis, Powers’ property and simple C*-algebras, Mathematische Annalen 273 (1986), 241–250.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    D. A. Herrero, Approximation of Hilbert Space Operators. Vol. 1, Research Notes in Mathematics, Vol. 72, Pitman, Boston, MA, 1982.Google Scholar
  19. [19]
    K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.zbMATHGoogle Scholar
  20. [20]
    E. T. A. Kakariadis and E. G. Katsoulis, Semicrossed products of operator algebras and their C*-envelopes, Journal of Functional Analysis 262 (2012), 3108–3124.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    E. Kastis and S. C. Power, The operator algebra generated by the translation, dilation and multiplication semigroups, Journal of Functional Analysis 269 (2015), 3316–3335.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    A. Katavolos and S. C. Power, The Fourier binest algebra, Mathematical Proceedings of the Cambridge Philosophical Society 122 (1997), 525–539.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    A. Katavolos and S. C. Power, Translation and dilation invariant subspaces of L2(R), Journal für die Reine und Angewandte Mathematik 552 (2002), 101–129.MathSciNetzbMATHGoogle Scholar
  24. [24]
    R. H. Levene and S. C. Power, Reflexivity of the translation-dilation algebras on L2(R), International Journal of Mathematics 14 (2003), 1081–1090.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge University Press, Cambridge–New York, 1982.zbMATHGoogle Scholar
  26. [26]
    G. W. Mackey, A theorem of Stone and von Neumann, Duke Mathematical Journal 16 (1949), 313–326.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    M. J. McAsey and P. S. Muhly, Representations of non-selfadjoint crossed products, Proceedings of the London Mathematical Society 47 (1983), 128–144.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    G. K. Pedersen, C*-algebras and their Automorphism Groups, London Mathematical Society Monographs, Vol. 14, Academic Press, London–New York, 1979.Google Scholar
  29. [29]
    J. R. Peters, Semicrossed products of C*-algebras, Journal of Functional Analysis 59 (1984), 498–534.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    S. C. Power, Classification of analytic crossed product algebras, Bulletin of the London Mathematical Society 105 (1989), 368–372.MathSciNetzbMATHGoogle Scholar
  31. [31]
    S. C. Power, Limit Algebras: An Introduction to Subalgebras of C*-algebras, Pitman Research Notes in Mathematics Series, Vol. 278, Longman Scientific and Technical, Harlow, 1992.Google Scholar
  32. [32]
    S. C. Power, Completely contractive representations for some doubly generated antisym-metric operator algebras, Proceedings of the American Mathematical Society 126 (1998), 2355–2359.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    H. Radjavi and P. Rosenthal, Invariant Subspaces, Dover, Mineola, NY, 2003.zbMATHGoogle Scholar
  34. [34]
    M. A. Shubin, Almost periodic functions and partial differential operators, RussianMathematical Surveys 33 (1978), 1–52.MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    M. Wasley, Ideals and isomorphisms of semicrossed product operator algebras, Ph.D. thesis, Lancaster University, 1999.Google Scholar
  36. [36]
    D. P. Williams, Crossed Products of C*-algebras, Mathematical Surveys and Monographs, Vol. 134, American Mathematical Society, Providence, RI, 2007.Google Scholar

Copyright information

© The Hebrew University of Jerusalem 2019

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsLancaster UniversityBailrigg, LancasterUK

Personalised recommendations